7 research outputs found

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Einstein@Home search for periodic gravitational waves in early S5 LIGO data

    Get PDF
    This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data were searched for quasimonochromatic waves with frequencies f in the range from 50 to 1500 Hz, with a linear frequency drift ˙f (measured at the solar system barycenter) in the range −f/τ<˙f<0.1f/τ, for a minimum spin-down age τ of 1000 years for signals below 400 Hz and 8000 years above 400 Hz. The main computational work of the search was distributed over approximately 100 000 computers volunteered by the general public. This large computing power allowed the use of a relatively long coherent integration time of 30 hours while searching a large parameter space. This search extends Einstein@Home’s previous search in LIGO S4 data to about 3 times better sensitivity. No statistically significant signals were found. In the 125–225 Hz band, more than 90% of sources with dimensionless gravitational-wave strain tensor amplitude greater than 3×10−24 would have been detected

    Microdialysis as a tool in local pharmacodynamics

    No full text
    In many cases the clinical outcome of therapy needs to be determined by the drug concentration in the tissue compartment in which the pharmacological effect occurs rather than in the plasma. Microdialysis is an in vivo technique that allows direct measurement of unbound tissue concentrations and permits monitoring of the biochemical and physiological effects of drugs throughout the body. Microdialysis was first used in pharmacodynamic research to study neurotransmission, and this remains its most common application in the field. In this review, we give an overview of the principles, techniques, and applications of microdialysis in pharmacodynamic studies of local physiological events, including measurement of endogenous substances such as acetylcholine, catecholamines, serotonin, amino acids, peptides, glucose, lactate, glycerol, and hormones. Microdialysis coupled with systemic drug administration also permits the more intensive examination of the pharmacotherapeutic effect of drugs on extracellular levels of endogenous substances in peripheral compartments and blood. Selected examples of the physiological effects and mechanisms of action of drugs are also discussed, as are the advantages and limitations of this method. It is concluded that microdialysis is a reliable technique for the measurement of local events, which makes it an attractive tool for local pharmacodynamic research
    corecore