2,041 research outputs found

    Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    Get PDF
    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment.METHODS: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested.RESULTS: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed.CONCLUSIONS: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies

    Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA × DBA model.

    Full text link
    Inbred strains of mice are powerful models for understanding human pregnancy complications. For example, the exclusive mating of CBA/J females to DBA/2J males increases fetal resorption to 20-35% with an associated decline in placentation and maintenance of maternal Th1 immunity. More recently other complications of pregnancy, IUGR and preeclampsia, have been reported in this model. The aim of this study was to qualify whether the CBA/CaH substrain female can substitute for CBA/J to evoke a phenotype of embryonic/fetal mortality and IUGR. (CBA/CaH × DBA/2J) F1 had significantly higher embryonic/fetal mortality mortality (p = 0.0063), smaller fetuses (p  10th percentile). In addition, placentae of "normal-weight" (CBA/CaH × DBA/2J) F1 were significantly smaller (p < 0.0006) with a greater proportion of labyrinth (p = 0.0128) and an 11-fold increase in F4/80 + macrophage infiltration (p < 0.0001) when compared to placentae of (CBA/CaH × Balb/c) F1. In conclusion, the embryonic/fetal mortality and IUGR phenotype is not exclusive to CBA/J female mouse, and CBA/CaH females can be substituted to provide a model for the assessment of novel therapeutics

    Implications of uncertainties on European DEMO design

    Get PDF
    During the pre-conceptual design phase of fusion devices such as the European demonstration fusion power plant (DEMO), systems codes provide a fast evaluation of optimal design points and highlight high impact areas. However, determining or evaluating a design point at such an early stage comes with uncertainties in many of the design parameters. These uncertainties are both associated with the physics as well as the engineering basis of the European DEMO design. The work applies an uncertainty quantification analysis to the 2017 pulsed European DEMO design using the PROCESS systems code. It assumes that DEMO will be built as suggested by the baseline and explores what implications the currently known physics and engineering uncertainties have on the expected performance parameters (net electric output and pulse length), while optimising the fusion gain Q. A more detailed single parameter analysis clearly identifies high impact parameters. This confirms previous investigations as well as revealing new areas that warrant deeper investigation in particular in the technology area

    Role for the thromboxane A 2 receptor β-isoform in the pathogenesis of intrauterine growth restriction

    Full text link
    Intrauterine growth restriction (IUGR) is a pathology of pregnancy that results in failure of the fetus to reach its genetically determined growth potential. In developed nations the most common cause of IUGR is impaired placentation resulting from poor trophoblast function, which reduces blood flow to the fetoplacental unit, promotes hypoxia and enhances production of bioactive lipids (TXA 2 and isoprostanes) which act through the thromboxane receptor (TP). TP activation has been implicated as a pathogenic factor in pregnancy complications, including IUGR; however, the role of TP isoforms during pregnancy is poorly defined. We have determined that expression of the human-specific isoform of TP (TPβ) is increased in placentae from IUGR pregnancies, compared to healthy pregnancies. Overexpression of TPα enhanced trophoblast proliferation and syncytialisation. Conversely, TPβ attenuated these functions and inhibited migration. Expression of the TPβ transgene in mice resulted in growth restricted pups and placentae with poor syncytialisation and diminished growth characteristics. Together our data indicate that expression of TPα mediates normal placentation; however, TPβ impairs placentation, and promotes the development of IUGR, and represents an underappreciated pathogenic factor in humans

    Plastic shrinkage cracking of concrete - Roles of osmotic suction

    Get PDF
    Plastic shrinkage cracking of concrete occurs when the stresses arising in the concrete, due to a combination of suction and restraints of deformation such as reinforcement or formwork, equal its strength. However, three different types of suctions should be distinguished, namely total, matric and osmotic suctions. Although the total suction comprises matric and osmotic suctions, it is often used interchangeably with matric suction, with the underlying unconfirmed assumption that either the osmotic suction or its effect is negligible. In this paper, after a discussion of the pore moisture suctions and strength of unsaturated early-age concrete, experimental investigations of the suctions arising in, and the tensile strength and shear strength of, fly ash mixed with solutions of different osmotic suctions are described. It was found that osmotic suction has negligible effect on the shear and tensile strength, and hence, by inference, the inter-particle stresses in the fly ash mixture and early-age concrete. This strongly suggests that the role played by osmotic suction in the plastic shrinkage cracking of concrete is minimal and, accordingly, justifies the focus of earlier researchers on matric suction only

    Stellar winds from Massive Stars

    Get PDF
    We review the various techniques through which wind properties of massive stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants - are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence, Magellanic Cloud O star mass-loss rates are typically matched to within a factor of two for various calibrations. Stellar winds from LBVs are typically denser and slower than equivalent B supergiants, with exceptional mass-loss rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001). Recent mass-loss rates for Galactic WR stars indicate a downward revision of 2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997), although evidence for a metallicity dependence remains inconclusive (Crowther 2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants from alternative techniques remain highly contradictory. Recent Galactic and LMC results for RSG reveal a large scatter such that typical mass-loss rates lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren ed.), Kluwe

    Economic factors influencing zoonotic disease dynamics: demand for poultry meat and seasonal transmission of avian influenza in Vietnam

    Get PDF
    While climate is often presented as a key factor influencing the seasonality of diseases, the importance of anthropogenic factors is less commonly evaluated. Using a combination of methods-wavelet analysis, economic analysis, statistical and disease transmission modelling-we aimed to explore the influence of climatic and economic factors on the seasonality of H5N1 Highly Pathogenic Avian Influenza in the domestic poultry population of Vietnam. We found that while climatic variables are associated with seasonal variation in the incidence of avian influenza outbreaks in the North of the country, this is not the case in the Centre and the South. In contrast, temporal patterns of H5N1 incidence are similar across these 3 regions: periods of high H5N1 incidence coincide with Lunar New Year festival, occurring in January-February, in the 3 climatic regions for 5 out of the 8 study years. Yet, daily poultry meat consumption drastically increases during Lunar New Year festival throughout the country. To meet this rise in demand, poultry production and trade are expected to peak around the festival period, promoting viral spread, which we demonstrated using a stochastic disease transmission model. This study illustrates the way in which economic factors may influence the dynamics of livestock pathogens

    Boundary Interactions of Rough non-Gaussian Surfaces

    Get PDF
    Surface topography is important as it influences contact load-carrying capacity and operational efficiency through generated friction, as well as wear. As a result, a plethora of machining processes and surface finishing techniques have been developed. These processes yield topographies, which are often non-Gaussian, with roughness parameters that alter hierarchically according to their interaction heights. They are also subject to change through processes of rapid initial running-in wear as well as any subsequent gradual wear and embedding. The stochastic nature of the topography makes for complexity of contact mechanics of rough surfaces, which was first addressed by the pioneering work of Greenwood and Williamson, which among other issues is commemorated by this contribution. It is shown that their seminal contribution, based on idealised Gaussian topography and mean representation of asperity geometry should be extended for practical applications where surfaces are often non-Gaussian, requiring the inclusion of surface-specific data which also evolve through process of wear. The paper highlights a process dealing with practical engineering surfaces from laboratory-based testing using a sliding tribometer to accelerated fired engine testing for high performance applications of cross-hatched honed cylinder liners. Such an approach has not hitherto been reported in literature

    Towards the development of novel Trypanosoma brucei RNA editing ligase 1 inhibitors

    Get PDF
    Abstract Background Trypanosoma brucei (T. brucei) is an infectious agent for which drug development has been largely neglected. We here use a recently developed computer program called AutoGrow to add interacting molecular fragments to S5, a known inhibitor of the validated T. brucei drug target RNA editing ligase 1, in order to improve its predicted binding affinity. Results The proposed binding modes of the resulting compounds mimic that of ATP, the native substrate, and provide insights into novel protein-ligand interactions that may be exploited in future drug-discovery projects. Conclusions We are hopeful that these new predicted inhibitors will aid medicinal chemists in developing novel therapeutics to fight human African trypanosomiasis

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    • …
    corecore