253 research outputs found

    Scanning Electron Microscopy Studies of Staphylococcal Adherence to Heart Valve Endothelial Cells in Organ Culture: An In Vitro Model of Acute Endocarditis

    Get PDF
    Organ cultures of human heart valves were used as a model to study the initial pathobiology of acute infective bacterial endocarditis. We used Staphylococcus aureus isolated from a case of infective endocarditis to infect the in vitro culture of the heart valves. Using scanning electron microscopy, we assessed the initial damage, attachment to and invasion of the endothelial cell layer by staphylococci. Our results indicate there is initial damage to the endothelium prior to observation of staphylococci attaching to the endothelial cell. By 12 h post infection, there is significant attachment and damage. At 24 h after infection, destruction of the heart valve endothelium is complete. The attachment and destruction arc progressive events and can be correlated quantitatively with bacterial numbers from the culture medium and those attached to the valves. This is correlated with increasing adherence ratios of the attaching staphylococci

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a

    Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves

    Full text link
    Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff C. Smith et a

    Hydrologic and isotopic modeling of Alpine Lake Waiau, Mauna Kea, Hawai'i

    Get PDF
    Analysis of hydrologic, meteorologic, and isotopic data collected over 3 yr quantifies and explains the enormous variability and isotopic enrichment (δ18O = +16.9, δD = +50.0) of alpine Lake Waiau, a culturally and ecologically significant perched lake near the summit of Mauna Kea, Hawai'i. Further, a simple one-dimensional hydrologic model was developed that couples standard water budget modeling with modeling of δD and δ18O isotopic composition to provide daily predictions of lake volume and chemistry. Data analysis and modeling show that winter storms are the primary source of water for the lake, adding a distinctively light isotopic signature appropriate for high-altitude precipitation. Evaporation at the windy, dry summit is the primary loss mechanism for most of the year, greatly enriching the lake in heavy isotopes

    Cutaneous angiosarcoma of the scalp

    Full text link
    BACKGROUND Angiosarcoma is a malignant tumor of vascular endothelial cells that arises in the head and neck. It is a rare, difficult to treat, and lethal tumor. METHODS Clinical data from patients who were diagnosed with angiosarcoma of the scalp between 1975 and 2002 at the University of Michigan were reviewed. Analysis was performed to assess for factors impacting time to recurrence and survival. RESULTS The study was comprised of 29 patients with a median age of 71.0 years. Most patients presented after a delay in diagnosis with either a bruise-like macule (48.3%) or a nonbruise-like nodule (51.7%). Seventy-five percent of patients had pathologic Stage T2 disease, and 76% of patients had high-grade tumors. Virtually all patients underwent surgical excision (96.6%); however, negative surgical margins were achieved in only 21.4% of patients. Multiple lesions on presentation were associated with a shorter time to recurrence ( P = 0.02). The median actuarial survival was 28.4 months. Younger patients and patients with Stage T1 disease had improved survival ( P = 0.024 and P = 0.013, respectively). Radiation therapy was associated significantly with a decreased chance of death (hazard ratio, 0.16; P = 0.006). CONCLUSIONS Although surgery remains the first option for the treatment of patients with angiosarcoma of the scalp, achieving negative margins often is impossible. Patients who are younger and who have less extensive disease fare better. Postoperative radiation therapy should be employed routinely, as it may lead to improved survival. Cancer 2003. © 2003 American Cancer Society. DOI 10.1002/cncr.11667Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34380/1/11667_ftp.pd

    Priority strategies to improve gender equity in Canadian emergency medicine: proceedings from the CAEP 2021 Academic Symposium on leadership

    Get PDF
    Objectives: Gender inequities are deeply rooted in our society and have significant negative consequences. Female physicians experience numerous gender-related inequities (e.g., microaggressions, harassment, violence). These inequities have far-reaching consequences on health, well-being and career longevity and may result in the devaluing of various strengths that female emergency physicians bring to the table. This, in turn, has an impact on patient healthcare experience and outcomes. During the 2021 Canadian Association of Emergency Physicians (CAEP) Academic Symposium, a national collaborative sought to understand gender inequities in emergency medicine in Canada. Methods: We used a multistep stakeholder-engagement-based approach (harnessing both quantitative and qualitative methods) to identify and prioritize problems with gender equity in emergency medicine in Canada. Based on expert consultation and literature review, we developed recommendations to effect change for the higher priority problems. We then conducted a nationwide consultation with the Canadian emergency medicine community via online engagement and the CAEP Academic Symposium to ensure that these priority problems and solutions were appropriate for the Canadian context. Conclusion: Via the above process, 15 recommendations were developed to address five unique problem areas. There is a dearth of research in this important area and we hope this preliminary work will serve as a starting point to fuel further research. To facilitate these scholarly endeavors, we have appended additional documents identifying other key problems with gender equity in emergency medicine in Canada as well as proposed next steps for future research

    Odor supported place cell model and goal navigation in rodents

    Get PDF
    Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation

    ACCESS: Design and Sub-System Performance

    Get PDF
    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 -1.7 micrometer bandpass

    Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research

    Get PDF
    Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community
    corecore