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Abstract

Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the
discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and
animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of
interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent
differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many
centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from
patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for
Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by
any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for
request from a wide range of neurological disorders and this collection will be continually expanded. This represents a
significant resource that will advance the use of patient cells as disease models by the scientific community.
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Introduction

Neurodegenerative diseases, including Alzheimer’s disease (AD),

Parkinson’s disease (PD), frontotemporal dementia, amyotrophic

lateral sclerosis (ALS), Huntington’s disease (HD), ataxias and

dystonias are a major socioeconomic problem, and understanding

the biological basis of neuronal death in these disorders is a major

challenge for basic research. Many of the loci responsible for early-

onset, familial forms of these disorders have been identified.

Mutations in APP, PS1 and PS2 are associated with AD [1–4],

SNCA, LRRK2, PRKN, PINK1 and GBA [5–9] are associated with

PD; SOD1, TARDP and FUS mutations lead to familial ALS [10–

12]; frontotemporal dementia and parkinsonism linked to chro-

mosome-17 is associated with MAPT (FTDP-17T) and PGRN

mutations (FTDP-17U/GRN) [13–15]; and CAG expansion of

the HTT gene causes HD [16].

Using this genetic information as a basis for developing cell and

animal models has greatly enhanced our understanding of the

biological mechanisms underlying neuronal degeneration in these

disorders. However, current cell models of neurological disease are

limited by two major drawbacks: non-physiological protein

expression levels and/or a non-neuronal cell type [17–19].

Patient-derived cells such as fibroblasts have been used as models

in several studies looking at the basis of neurological disorders,

including AD [20]. Recently, human somatic cells, such as

fibroblasts, were reprogrammed to pluripotency by the exogenous

expression of the transcription factors OCT4, SOX2, KLF4

NANOG, LIN28 and MYC [20–22]. These induced pluripotent

stem cells (iPSC) can be subsequently differentiated into neurons

and glia, therefore by generating iPSC from patients carrying

disease-linked mutations physiological expression of mutated genes

in the cell type specifically affected in disease can be achieved. This

technology has already been used to successfully model a range of

neurological diseases including AD, PD, ALS and Ataxia [23–27].

Despite the fact that many of these diseases are adult onset,

several groups have used iPSCs to model aspects of disease

pathology. Perhaps the most notable of these is AD, where cells

derived from patients with mutations in several genes have

successfully recapitulated common pathology. Neurons generated

from patients carrying point mutations in PSEN1, APP duplica-

tions and trisomy 21 (and thus an extra copy of the APP gene) each

faithfully recapitulate features of AD pathology including in-

creased Ab production and elevated tau phosphorylation

[26,28,29]. The presence of overlapping phenotypes in multiple

patients with the same mutation, as well as mutations in different

genes linked to the same disease, provides increased confidence

that iPSC can be used to reveal disease phenotypes. Importantly,

gamma secretase inhibitors prevented increased Ab production in

these cells, demonstrating the suitability of iPSC-neurons as a

platform for drug screening [26,29].

Further, iPSC have provided evidence for the importance of

correct cellular context in disease models. Spinocerebellar ataxia

type 3 is caused by an expansion of a polyglutamine coding repeat

in the ATXN3 gene. iPSC-neurons generated from SCA3 patients

recapitulate the pathological hallmark of SCA3 patients: accumu-

lation of detergent-insoluble aggregates of full length and cleaved

Ataxin 3 [25]. This phenotype was specific to neurons, and

furthermore was dependent on the presence of functional ion

channels, demonstrating the ability of iPSC to uncover disease

mechanisms by allowing the study of mutations in the context of

functional human neurons.

The use of iPSC as disease models is reviewed comprehensively

by Cherry et al [30]. There is now compelling evidence of the

power of patient-derived iPSC to model disease pathology, offer

insight into disease mechanisms and act as a platform for drug

screening. However, it has also become apparent that there is

extensive intra- and inter- patient variability (23, 25), and it is

necessary to use both multiple iPSC lines per patient and multiple

patients per gene in order to reliably assign disease phenotypes.

Although the sporadic forms of AD, PD and ALS are common,

the familial forms caused by defined mutations are relatively rare,

and for many research groups interested in these and other rarer

neurological diseases, the limiting factor in the use of iPSC is

access to patient fibroblasts with the disease-causing mutations of

interest. For HD, where all affected individuals have the same type

of mutation, an expanded CAG trinucleotide repeat, it is desirable

to have access to subjects with a range of expansion size, which is

the primary determinant of the rate of pathogenesis. Furthermore,

recent reports have demonstrated the necessity of using multiple

patient lines with mutations in the same gene, in order to ensure

that observed cellular phenotypes are caused by the genetic lesion

of interest and not patient variability [25,26]. With this in mind,

our goal was to generate a resource of fibroblast cell lines with

mutations that are linked to neurological disease. There are

currently 67 mutation-defined fibroblast lines available to request

from the Coriell repository, and more lines currently undergoing

expansion and quality control. These include cell lines with

multiple different mutations in each specific gene as well as cell

lines from multiple patients carrying the same mutation. Further

lines will be collected and deposited as patients are identified in

A Fibroblast Resource for Disease Research
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Table 1. Fibroblast lines generated in this study.

Clinical Gene Inheritance Mutation Number of lines Status Reference

AD PSEN1 D Y115H 1 Submitted [33]

PSEN1 D M146I 1 Available [34]

PSEN1 D E184D 1 Available [35]

PSEN1 D P264L 1 Available [33]

PSEN1 D R278I 1 Submitted [36]

PD SNCA D Triplication 1 Available [37]

LRRK2 D R1441G 2 Available

LRRK2 D R1441C 2 Available [38,39]

LRRK2 D G2019S 20 19 Available [40–42]

LRRK2 D G2019S homozygote 2 [43]

GBA N370S 4 Available [42,44]

GBA L444P 1 [42,44]

PARK2 R R42P, DExon 3 1 Available [45,46]

PARK2 R D255, DExon 3–4 1 Available [45,46]

PARK2 R DExon 3–4 homozygote 1 Submitted

PARK2 R R275W/R275Q 1 Available [47]

PINK1 R Q456X homozygote 1

PINK1 R D525N/W577R 1

HD HTT D CAG repeat, range 38–57 17 Available

ALS SOD1 D A4V 2

SOD1 D C38G 1

SOD1 D L38V 1 Available

SOD1 D E49K 1

SOD1 D G86R 1

SOD1 D A89V 1

SOD1 R D90A 2 Available

SOD1 D D91A 1 Available

SOD1 D E100G 1 Available

SOD1 D N138K 1

SOD1 D I112T 1

SOD1 D I113T 6 2 Available

SOD1 D L144P 2 1 Available

SOD1 D V148G 1 Available

TARDBP D G298S 1 Available

FTDP-17T MAPT D P301L 2 Available [48]

MAPT D V337M 2 Available [49]

MAPT D N279K 1 Available [50,51]

MAPT D Exon 10+16 5 [52]

MAPT D R406W 2 [53]

FTDP-17U GRN D A9D 1 Available [54]

GRN D R493X 1 [55]

FTD VCP D R155H 1 [56]

Perry Syndrome DCTN1 D T72P 1 Available [57,58]

Dystonia THAP1 D I149T 1 [59,60]

Ataxia CACNA1A D R1346X 1

Disease, gene, mutation and mode of inheritance for fibroblast cell lines. The current status of each line (available, submitted but not yet in catalogue) is indicated.
Where the status is left blank, this indicates fibroblast lines have been generated but are awaiting submission to the NINDS repository. All variants are heterozygous
unless otherwise stated. References indicate where families have been described in the literature. D = autosomal dominant, R = autosomal recessive.
doi:10.1371/journal.pone.0043099.t001
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clinics for participation in this study. This represents a significant

resource that will encourage the use of patient-derived cell models

in research by the wider scientific community.

Methods

Patient consent and protection of privacy
In this study, for all biopsy samples taken, the subsequent

generation and distribution of human cell lines, and the deposition

of these cell lines in the NINDS repository were agreed by the

patients using consent forms and patient information sheets that

were reviewed and approved by local research ethics committees.

Each sample is pseudoanonymised in a systematic way upon

leaving the clinic. There are minor physical risks associated with

the skin punch biopsy procedure, including the possibility of

infection. These risks, as well as the relative benefits of

participating in this study are also discussed with participants

during the informed consent process. It is stressed that immediate

benefits to the patients themselves are unlikely, but use of these cell

lines for in vitro research will lead to an overall enhancement of our

understanding of the basic disease mechanisms. In the future, this

could result in the development of novel therapeutics. For some

lines, consent specifically includes commercial use of the cells and

pathogenic pathway discovery (but not for direct cellular

therapeutics). However, cell lines will not be sold for profit and

patients are informed that they will not benefit financially from

any products or tests that arise from the use of these cells. We have

found that patients were typically enthusiastic about participation

in this study, and we are confident that we will expand our

collection of patient-derived cell lines in the future.

Fibroblast generation
Fibroblasts were generated from a 3–6 mm skin punch biopsy

taken under local anaesthetic following informed consent. Biopsies

were dissected into ,1 mm pieces and cultured in 5 cm2 petri

dishes in DMEM, 10% FBS, 1% L-Glutamine until fibroblasts

were seen to grow out from the explants. When fibroblasts reached

confluency, they were detached from culture dishes using TrypleE

(Invitrogen) and transferred to larger culture vessels for further

expansion. Cells are frozen at the lowest passage possible while still

obtaining an adequate number of total cells for distribution

(typically 2–4 passages or approximately 26107 total cells; cells are

distributed at 56105 cells per ampoule). The passage number of

the cells on distribution depends on demand for a particular cell

line, however 40–60 ampoules of cells are generally derived per

biopsy, whilst keeping the passage number between 2–4. Cells will

be distributed at the lowest available passage, which is indicated

for each sample listed in the Repository online catalogue.

Quality control of fibroblast cultures
Fibroblast cultures are tested for Mycoplasma contamination

prior to frozen storage, and after recovery from liquid nitrogen

prior to distribution. The gender of cell lines is verified by PCR

with a Y chromosome-specific primer pair. Replicate cultures or

matched cultures of differing cell types from the same individual

are analyzed by PCR using microsatellite and Y chromosome-

specific primer pairs to assure cell culture identity.

Immunocytochemistry
Fibroblasts were fixed in 4% paraformaldehyde for 30 min at

room temperature then blocked and permeabilised in blocking

buffer (10% FBS, 0.1% Triton X-100 in phosphate buffered saline)

for 30 min at room temperature. Cells were incubated with rabbit

polyclonal anti-FSP1 (1:100, Abcam) and mouse monoclonal anti-

human fibroblasts clone TE-7 (1:100, Millipore) diluted in

blocking buffer overnight at 4uC. Cells were then incubated with

Alexa Fluor 488 and 568 antibodies (1:500) for 1 h at room

temperature and nuclei were stained using DAPI. Images were

acquired using a Zeiss LSM 710 confocal microscope.

Western blotting
Cells were washed in PBS and then lysed on ice for 30 minutes

in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% v/v Tween-

20, 0.2% NP40, 10%v/v Glycerol) containing Complete protease

inhibitor cocktail (Roche). Lysates were centrifuged for 10 min at

11,000 g(av), 4uC and protein concentrations were estimated using

the BioRad DC Protein Assay Kit. Equal amounts of protein were

electrophoresed on NuPAGE 4–12% Bis-Tris Gels (Invitrogen)

and transferred onto nitrocellulose membranes (Whatman).

Membranes were probed with primary antibodies to FSP-1 (rabbit

polyclonal, 1:500, Abcam) and b-actin (mouse monoclonal,

1:5000, Sigma Aldrich) overnight at 4uC. Membranes were then

incubated with appropriate secondary antibodies (AlexaFluor 680

anti-mouse IgG, Invitrogen and IRDye 800 anti-rabbit IgG,

Rockland Immunochemicals, both 1:5000) for 1 h at RT before

visualisation using an Odyssey Infrared imaging system (LI-COR

Biosciences).

Population doubling levels
Population doubling level (PDL) is a measurement of the total

number of times the cells within the population have doubled since

their primary isolation. PDLs were calculated using the following

equation:

PDL~

3:32 log total viable cells atharvest=total viable cells at seedð Þð Þ

The total viable cells at seed was determined at the first seeding

following proliferation of cells from the skin explant, or from the

frozen ampoule for fibroblast cultures generated outside of Coriell.

The total number of viable cells at harvest was determined

immediately prior to cryopreservation.

Figure 1. Fibroblast cultures express the mesenchymal markers
FSP1 and TE7. Cells generated from skin punch biopsies were verified
as fibroblasts by morphological assessment (A) and positive staining
with antibodies to fibroblast-specific protein 1 (FSP1) and fibroblast-
specific clone TE7 (B, 636). All fibroblasts examined (n = 6) demon-
strated positive staining with both antibodies.
doi:10.1371/journal.pone.0043099.g001
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Results

Collection of fibroblast cell lines
We have generated a collection of fibroblast cell lines from

patients with mutations that are linked to neurodegenerative

disorders, including AD, PD, ALS, FTD, HD, dystonias and

ataxias. Also included in the collection are idiopathic sporadic

Parkinson’s disease fibroblast lines and normal control fibroblast

lines, including family members of mutation carriers. These have

been deposited in the National Institute for Neurological Disorders

and Stroke (NINDS) Repository at the Coriell Institute for

Medical Research (Camden, NJ) and the lines carrying known

mutations are detailed in Table 1. Access to these cell lines is open

to the scientific community and they are available to all

researchers for use in basic research. This collection will be

continually expanded and will be a valuable resource for research

into basic disease mechanisms of neurological disorders. An up to

date list of lines available upon request from the NINDS

Repository can be found at: http://ccr.coriell.org/sections/

collections/NINDS/FibroSubcollList.aspx?SsId = 10&PgId = 681.

Fibroblast cell lines are deposited along with a clinical data

elements (CDE) form that outlines the clinical background of the

patient from whom the cells are derived. This protects the identity

of the patient (see below) while providing the end-user with

confidence in the clinical diagnosis. CDE’s for PD, ALS, and HD

have been developed with input from researchers in the field. For

AD and other dementia cell lines, there is currently no CDE;

however, information (e.g., sex, year of birth, and MMSE score at

the time of biopsy) is included.

Figure 2. Fibroblast morphology and marker expression remain consistent during prolonged culture. Fibroblast lines were
immunostained with antibodies FSP1 and TE7 at multiple consecutive passages (A). Passage numbers are indicated above the panels. Morphology,
FSP1 and TE7 staining did not change during five consecutive subculturings (n = 6, representative images from line NM34737, carrying the PSEN1
M146I mutation are shown). FSP1 levels were also detected by western blotting of fibroblast cell lysates (B). FSP1 was detected as a single band at
12 kDa in all fibroblast lines examined (top panel, n = 6). b-actin was used as a loading control (bottom panel). No variation in FSP1 levels was
observed between passages or between cell lines.
doi:10.1371/journal.pone.0043099.g002
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Fibroblast cultures are available upon request to all research

laboratories, including those in industry. Users wishing to request

cells are asked to complete a statement of research intent and

complete a NINDS Repository Materials Transfer Agreement

(MTA).

Skin explant-derived cell lines express the fibroblast-
specific proteins FSP1 and TE7

For all fibroblast lines generated, the identity and purity of each

line was confirmed by assessment of characteristic spindle-shaped

morphology (Fig. 1A) [31]. We also immunostained a subset of

lines (n = 6) for fibroblast-specific protein 1 (FSP1) and TE-7,

which detects an epitope specifically expressed by cells that are

mesenchymal in origin. All fibroblast lines examined showed

strong cytoplasmic staining of both FSP1 and TE7, confirming

that cells cultures established from skin explants are indeed

fibroblasts (Fig. 1B). Next, we examined the expression of FSP1

and TE-7 over multiple passages, to ensure that the properties of

the fibroblast lines were not altered by increased time in culture.

We found that the morphology of fibroblast lines remained

unchanged throughout five consecutive passages. Likewise, FSP1

and TE-7 were highly expressed in all cells and did not show

altered levels, or altered distribution, during continuous culture

(Fig. 2A). FSP1 levels were also examined by western blot

(Figure 2B). In fibroblast cell lysates, FSP1 was detected as a single

band at the expected molecular weight of 12 kDa (Fig. 2B). FSP1

was expressed at high levels in all cell lines examined (n = 6) and

the levels of FSP1 were not different between cell lines, or between

different passages.

Population doubling levels
Fibroblasts have a limited proliferative lifespan in culture, and

are able to complete a finite number of cell divisions before

reaching senescence (the Hayflick limit) [61]. As passage number is

a reflection only of the number of times a particular cell line has

been subcultured, and not a reflection of the absolute time in

culture of that particular cell line, the population doubling level

(PDL) of each fibroblast line available in the NINDS catalogue was

determined. PDL is a measure of the total number of times a cell

population has doubled since its initial isolation in vitro. The PDLs

of fibroblast lines in our collection varied from 2.89–7.7 (Table

S1). Fig. 3 shows the range and mean PDLs of the control

fibroblasts, and fibroblast lines from each disease group. A similar

range of PDL variability was seen across all disease groups and the

mean PDLs of fibroblasts were ,5 for each of the categories

represented by the collection. Thus, fibroblast lines requested from

the NINDS repository are comparable in terms of the absolute

time in culture of the cell. Senescence of human diploid fibroblast

cultures does not occur until after 40–50 population doublings

[62]. Therefore, cell cultures within our collection have low

population doubling numbers and can be expanded sufficiently by

the end-users prior to senescence. Furthermore, although the

proliferative capacity of the starting cell population may impact on

reprogramming efficiency, both our control and disease lines

should retain sufficient proliferative capacity to be suitable for

reprogramming to iPSCs.

Discussion

The search for the genetic basis of disease has provided the

impetus for the generation of animal and cell models that

recapitulate key disease features and allow better understanding

of the underlying biological mechanisms leading to cell death. A

major challenge to understanding the basis of neurological

disorders is our ability to model disease causing mutations at

physiological levels, in a relevant cell type. The recent develop-

ment of iPSCs, which can subsequently be differentiated into

neurons and glial cells, is redefining the way we approach in vitro

modelling of neurological disorders. We have developed a

collection of primary fibroblast lines from patients carrying

mutations that are associated with neurological disorders that

can be accessed by all bona fide research groups.

Although others have developed collections of disease-specific

iPSCs [32], we focussed on developing fibroblast cell lines. The

cell lines in our collection express high levels of the fibroblast

markers FSP-1 and TE-7, and are cryopreserved at low population

doubling levels for distribution. However, although fibroblasts are

the most common cell type in cultures established from dermal

outgrowths, these cultures actually represent a heterogeneous cell

population including endothelial cells, pericytes and several types

of stem/progenitor cells [62]. This cellular diversity could

influence the ability of each individual fibroblast line to give rise

to iPSC.

The molecular mechanisms underlying the reprogramming of

fibroblasts to iPSC are poorly understood and there has been

much debate as to whether the process is stochastic (all cells within

a given population have the potential to be reprogrammed) or elite

(only a subset of cells with particular properties can be

reprogrammed). In a recent study, Wakeo and colleagues

determined that iPSC were exclusively generated from a sub-

population of cells positive for both the stem cell marker SSEA3

and the mesencyhmal marker CD105 [63]. These cells, termed

muse cells (multilineage-differentiating stress enduring cells),

express the pluripotency markers Oct3/4, Nanog and Sox2 and

represent approximately 2% of cells present in fibroblast cultures.

This work provides support for the elite model of reprogram-

ming and suggests the efficiency of reprogramming from each of

the fibroblast cultures within this collection may depend on the

proportion of Muse cells present, which was not examined in this

study. However, even in a pure Muse cell population the efficiency

of reprogramming remains low (0.03%), and it therefore seems

likely that there is some stochastic influence on reprogramming.

This notion is supported by multiple reports describing the

addition of extra reprogramming factors and small molecules that

Figure 3. Population doubling levels of fibroblast cell lines.
Population doubling levels were calculated for each of the cell lines
available in the NINDS repository at the time of cryopreservation.
Individual points of the graph correspond to the PDL of individual
fibroblast lines, the horizontal line represents the mean PDL for each
disease category. PDLs ranged between 2–8 with a mean PDL of ,5 for
both control and disease cell lines. A full list of PDLs for individual cell
lines in provided in Table S1.
doi:10.1371/journal.pone.0043099.g003
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increase the efficiency of reprogramming (reviewed in [64]). Thus,

the elite vs stochastic debate remains open, but it is important for

research groups requesting cells described in this manuscript to be

aware of the implications of fibroblast culture diversity. By making

fibroblast lines available, the end-users retain the flexibility to

reprogram by their method of choice.

This collection contains cell lines with mutations in a wide range

of genes as well as multiple different mutations in each gene. In

many cases, cell lines from several patients with the same mutation

are available which will control for patient variability and allow

robust phenotypes to be defined. The rarity of familial forms of

neurological diseases means this represents a valuable resource

which we anticipate will be widely used by the scientific

community, advancing the use of patient cells for in vitro disease

modelling.

Supporting Information

Table S1 Population doubling levels for fibroblast lines
in the NINDS repository. NINDS reference number, disease,

mutation and population doubling level for each cell line currently

available from the NINDS repository.
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