274 research outputs found
Decaying shock studies of phase transitions in MgOSiO2 systems: implications for the Super-Earths interiors
We report an experimental study of the phase diagrams of periclase (MgO),
enstatite (MgSiO3) and forsterite (Mg2SiO4) at high pressures. We investigated
with laser driven decaying shocks the pressure/temperature curves of MgO,
MgSiO3 and Mg2SiO4 between 0.2-1.2 TPa, 0.12-0.5 TPa and 0.2-0.85 TPa
respectively. A melting signature has been observed in MgO at 0.47 TPa and 9860
K, while no phase changes were observed neither in MgSiO3 nor in Mg2SiO4. An
increasing of reflectivity of MgO, MgSiO3 and Mg2SiO4 liquids have been
detected at 0.55 TPa -12 760 K, 0.15 TPa - 7540 K, 0.2 TPa - 5800 K,
respectively. In contrast to SiO2, melting and metallization of these compounds
do not coincide implying the presence of poor electrically conducting liquids
close to the melting lines. This has important implications for the generation
of dynamos in Super-earths mantles
Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction
Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction
The NiSi melting curve to 70 GPa
The melting curve of NiSi has been determined to 70 GPa on the basis of laser-heated diamond anvil cell (LH-DAC) experiments in which changes in the gradient of temperature vs. laser power functions were used as the melting criterion. The melting curve was corroborated with in situ X-ray diffraction experiments in both the LH-DAC and multi-anvil press in which the appearance of liquid diffuse scattering in the diffraction patterns was used as the melting criterion. At all pressures, the NiSi melting curve is lower than that of FeSi, with the difference in melting temperature reaching a maximum of 900 K at 14 GPa. The location of the B31 + B20 + L triple point has been constrained to 12 ± 2 GPa and 1550 ± 100 K and the B20 + B2 + L triple point to 28.5 ± 1.5 GPa and 2165 ± 60 K. On the basis of the in situ LH-DAC experiments the Clapeyron slope of the B20 → B2 transition is estimated at −67 MPa K−1. Extrapolation of the B2-NiSi liquidus to core-mantle boundary (CMB) conditions (135 GPa) suggests the melting point of NiSi (3700 ± 400 K) will be only marginally lower than that of isostructural FeSi (4000 ± 200 K). Thus any (Fe,Ni)Si solid solution present within the D″ layer is expected to remain solid, with the possible exception of the very hottest region adjacent to the CMB
Geochemical imprints of genotypic variants of <i>Globigerina bulloides</i> in the Arabian Sea
Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties by defining species based on their shell morphology. Recent genetic studies, however, have identified ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential repercussions for palaeoclimate reconstructions. Here we demonstrate how the presence of Globigerina bulloides cryptic genotypes in the Arabian Sea may influence geochemical signals of living and fossil assemblages of these morphospecies. We have identified two distinct genotypes of G. bulloides with either cool water (type-II) or warm water (type-I) temperature preferences in the Western Arabian Sea. We accompany these genetic studies with analyses of Mg/Ca and stable oxygen isotope (δ18O) compositions of individual G. bulloides shells. Both Mg/Ca and δ18O values display bimodal distribution patterns. The distribution of Mg/Ca values cannot be simply explained by seawater parameters, and we attribute it to genotype-specific biological controls on the shell geochemistry. The wide range of δ18O values in the fossil assemblage also suggests that similar controls likely influence this proxy in addition to environmental parameters. However, the magnitude of this effect on the δ18O signals is not clear from our data set, and further work is needed to clarify this. We also discuss current evidence of potential genotype-specific geochemical signals in published data on G. bulloides geochemistry and other planktonic foraminiferal species. We conclude that significant caution should be taken when utilizing G. bulloides geochemistry for paleoclimate reconstruction in the regions with upwelling activity or oceanographic fronts
Acute partial Budd-Chiari syndrome and portal vein thrombosis in cytomegalovirus primary infection: a case report
BACKGROUND: Splanchnic vein thrombosis may complicate inherited thrombotic disorders. Acute cytomegalovirus infection is a rare cause of acquired venous thrombosis in the portal or mesenteric territory, but has never been described extending into a main hepatic vein. CASE PRESENTATION: A 36-year-old immunocompetent woman presented with acute primary cytomegalovirus infection in association with extensive thrombosis in the portal and splenic vein. In addition, a fresh thrombus was evident in the right hepatic vein. A thorough evaluation for a hypercoagulable state was negative. The clinical course, biological evolution, radiological and histological findings were consistent with cytomegalovirus hepatitis complicated by a partial acute Budd-Chiari syndrome and portal thrombosis. Therapeutic anticoagulation was associated with a slow clinical improvement and partial vascular recanalization. CONCLUSION: We described in details a new association between cytomegalovirus infection and acute venous thrombosis both in the portal vein and in the right hepatic vein, realizing a partial Budd-Chiari syndrome. One should be aware that this rare thrombotic event may be complicated by partial venous outflow block
Recommended from our members
Direct Observation of Shock-Induced Disordering of Enstatite Below the Melting Temperature
We report in situ structural measurements of shock-compressed single crystal orthoenstatite up to 337 ± 55 GPa on the Hugoniot, obtained by coupling ultrafast X-ray diffraction to laser-driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X-ray diffraction signal at nanosecond timescales at 80 ± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post-perovskite have been indirectly reported in microsecond-scale plate-impact experiments. Therefore, we interpret the high-pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post-perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments. © 2020. The Authors
Attribute Controlled Reconstruction and Adaptive Mathematical Morphology
ISBN : 978-3-642-38293-2International audienceIn this paper we present a reconstruction method controlled by the evolution of attributes. The process begins from a marker, propagated over increasing quasi-flat zones. The evolution of several increasing and non-increasing attributes is studied in order to select the appropriate region. Additionally, the combination of attributes can be used in a straightforward way. To demonstrate the performance of our method, three applications are presented. Firstly, our method successfully segments connected objects in range images. Secondly, input-adaptive structuring elements (SE) are defined computing the controlled propagation for each pixel on a pilot image. Finally, input-adaptive SE are used to assess shape features on the image. Our approach is multi-scale and auto-dual. Compared with other methods, it is based on a given attribute but does not require a size parameter in order to determine appropriate regions. It is useful to extract objects of a given shape. Additionally, our reconstruction is a connected operator since quasi-flat zones do not create new contours on the image
Fe–FeO and Fe–Fe<sub>3</sub>C melting relations at Earth's core–mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core
International audienceEutectic melting temperatures in the Fe–FeO and Fe–Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe–S and Fe–Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core–mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle
- …