82 research outputs found

    Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise

    Get PDF
    This is the author accepted manuscript. The final version is available from Public Library of Science (PLoS) via the DOI in this record.Data accessibility: Data for primary analyses are included in S1 Data file.Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group – the birds-of-paradise – exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the trade-off between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit – the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness – functional overlap and interdependency – promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations

    Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types

    Get PDF
    The decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, usingacoustic data from several different sources ranging between the Equator and Chilean Patagonia. The pulse rate ofthe song units as well as their peak frequency were measured using two different methods (summed auto-correlationand Fourier transform). The sources of error associated with each measurement were assessed. There was a lineardecline in both parameters for the more common song type (southeast Pacific song type n ◦ 2). An abbreviated analysisalso showed a frequency decline in the scarcer southeast Pacific song type n ◦ 1 between 1970 to 2014, revealing thatboth song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequencyto examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song typesreported in the literature is presented.La décroissance en fréquence des deux chants de baleine bleue de l'océan pacifique sud est est examiné sur plusieurs décennies en utilisant comme source des données acoustiques de l'Equateur à la Patagonie chilienne. La fréquence de pulsation et la fréquence pic des signaux sont mesurés en utilisant deux méthodes distinctes (auto-corrélation sommée et transformée de Fourier rapide). Les sources d'erreur associées à chaque mesure sont estimées. Il y a un déclin linéaire de ces deux fréquences pour le chant le plus commun de cette zone (chant du Pacifique Sud Est n°2, SEP2). Un analyse plus rapide montre aussi une baisse linéaire, entre 1970 et 2014, de la fréquence du chant SEP1, plus rarement enregistré dans cette zone. Ces deux baisses ont des amplitudes similaires. L'intérêt de mesurer la fréquence de pulsation et la fréquence pic de façon concomitante est estimé. Enfin, une comparaison globale des déclins en fréquence de tous les types de chants de baleines bleues est fournie

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    Get PDF
    Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood

    Perspectives on Anaphylaxis Epidemiology in the United States with New Data and Analyses

    Get PDF
    Anaphylaxis incidence rates and time trends in the United States have been reported using different data sources and selection methods. Larger studies using diagnostic coding have inherent limitations in sensitivity and specificity. In contrast, smaller studies using chart reviews, including reports from single institutions, have better case characterization but suffer from reduced external validity due to their restricted nature. Increasing anaphylaxis hospitalization rates since the 1990s have been reported abroad. However, we report no significant overall increase in the United States. There have been several reports of increasing anaphylaxis rates in northern populations in the United States, especially in younger people, lending support to the suggestion that higher anaphylaxis rates occur at higher latitudes. We analyzed anaphylaxis hospitalization rates in comparably sized northern (New York) and southern (Florida) states and found significant time trend differences based on age. This suggests that the relationship of latitude to anaphylaxis incidence is complex

    Photosynthesis-dependent H₂O₂ transfer from chloroplasts to nuclei provides a high-light signalling mechanism

    Get PDF
    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression

    Hsp40 Couples with the CSPα Chaperone Complex upon Induction of the Heat Shock Response

    Get PDF
    In response to a conditioning stress, the expression of a set of molecular chaperones called heat shock proteins is increased. In neurons, stress-induced and constitutively expressed molecular chaperones protect against damage induced by ischemia and neurodegenerative diseases, however the molecular basis of this protection is not known. Here we have investigated the crosstalk between stress-induced chaperones and cysteine string protein (CSPα). CSPα is a constitutively expressed synaptic vesicle protein bearing a J domain and a cysteine rich “string” region that has been implicated in the long term functional integrity of synaptic transmission and the defense against neurodegeneration. We have shown previously that the CSPα chaperone complex increases isoproterenol-mediated signaling by stimulating GDP/GTP exchange of Gαs. In this report we demonstrate that in response to heat shock or treatment with the Hsp90 inhibitor geldanamycin, the J protein Hsp40 becomes a major component of the CSPα complex. Association of Hsp40 with CSPα decreases CSPα-CSPα dimerization and enhances the CSPα-induced increase in steady state GTP hydrolysis of Gαs. This newly identified CSPα-Hsp40 association reveals a previously undescribed coupling of J proteins. In view of the crucial importance of stress-induced chaperones in the protection against cell death, our data attribute a role for Hsp40 crosstalk with CSPα in neuroprotection

    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047

    Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

    Get PDF
    The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR
    corecore