99 research outputs found

    Obtention d'alliages réfractaires SiCxNy(O) par dépôt chimique à oartir d'une gazeuse Si(CH3)4-NH3

    Get PDF
    By pure thermal CVD from Si(CH/sub 3/)/sub 4/NH/sub 3/ mixtures SiC/sub x/N/sub y/(O) films have been prepared at 1475 K. Using electron microprobe analysis a continuous composition variation between SiC and Si/sub 3/N/sub 4/ is shown. The difficulty of quantitative analysis due to the conductivity of the samples is underlined. By selecting the right conditions, precise measurements were obtained. These films have an optical energy band gap in the range 2.2-4.1 eV and a constant photoluminescence peak. The film structure is discussed and these materials may be probably ascribed to an alloy phas

    Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite

    Get PDF
    The bentonite barrier of underground repositories for high-level radioactive waste will be hydrated by the groundwater while it is subjected to high temperatures due to the radioactive decay of the wastes. These changes of temperature affect the hydraulic and mechanical responses of bentonite, which has important effects on design and performance of repositories. The temperature influence on the hydro-mechanical behaviour of bentonite was studied in this paper by experiments, which were carried out with the Spanish FEBEX bentonite compacted at dry densities expected in the repository (from 1.5 to 1.8 Mg/m3). The dependence of the swelling strains of bentonite on the temperature has been measured from 30 °C to 90 °C. At high temperatures the swelling capacity of clay slightly decreases. Also, a clear decrease of swelling pressure as a function of temperature was observed for the same dry densities. Nevertheless, the deformation of bentonite is more dependent on the stress than the temperature. An increase in the permeability of water saturated bentonite with temperature has also been detected. The water retention curves of bentonite compacted at different dry densities were determined under isochoric conditions and in the range of temperatures from 20 °C to 120 °C. For a given density and water content, the suction decreases as the temperature increases at a rate, which is larger than the one predicted on the basis of water surface tension changing with temperature. Mechanisms related to the physico-chemical interactions that take place at microscopic level, in particular the transfer of interlayer water to the macropores triggered by temperature, seem to explain qualitatively the experimental observations.Postprint (published version

    RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer

    Get PDF
    Background: Around 15-20% of primary breast cancers are characterized by HER2 protein overexpression and/or HER2 gene amplification. Despite the successful development of anti-HER2 drugs, intrinsic and acquired resistance represents a major hurdle. This study was performed to analyze the RANK pathway contribution in HER2-positive breast cancer and anti-HER2 therapy resistance. Methods: RANK and RANKL protein expression was assessed in samples from HER2-positive breast cancer patients resistant to anti-HER2 therapy and treatment-naive patients. RANK and RANKL gene expression was analyzed in paired samples from patients treated with neoadjuvant dual HER2-blockade (lapatinib and trastuzumab) from the SOLTI-1114 PAMELA trial. Additionally, HER2-positive breast cancer cell lines were used to modulate RANK expression and analyze in vitro the contribution of RANK signaling to anti-HER2 resistance and downstream signaling. Results: RANK and RANKL proteins are more frequently detected in HER2-positive tumors that have acquired resistance to anti-HER2 therapies than in treatment-naive ones. RANK (but not RANKL) gene expression increased after dual anti-HER2 neoadjuvant therapy in the cohort from the SOLTI-1114 PAMELA trial. Results in HER2-positive breast cancer cell lines recapitulate the clinical observations, with increased RANK expression observed after short-term treatment with the HER2 inhibitor lapatinib or dual anti-HER2 therapy and in lapatinib-resistant cells. After RANKL stimulation, lapatinib-resistant cells show increased NF-κB activation compared to their sensitive counterparts, confirming the enhanced functionality of the RANK pathway in anti-HER2-resistant breast cancer. Overactivation of the RANK signaling pathway enhances ERK and NF-κB signaling and increases lapatinib resistance in different HER2-positive breast cancer cell lines, whereas RANK loss sensitizes lapatinib-resistant cells to the drug. Our results indicate that ErbB signaling is required for RANK/RANKL-driven activation of ERK in several HER2-positive cell lines. In contrast, lapatinib is not able to counteract the NF-κB activation elicited after RANKL treatment in RANK-overexpressing cells. Finally, we show that RANK binds to HER2 in breast cancer cells and that enhanced RANK pathway activation alters HER2 phosphorylation status. Conclusions: Our data support a physical and functional link between RANK and HER2 signaling in breast cancer and demonstrate that increased RANK signaling may contribute to the development of lapatinib resistance through NF-κB activation. Whether HER2-positive breast cancer patients with tumoral RANK expression might benefit from dual HER2 and RANK inhibition therapy remains to be elucidated

    Identification of a Mutation Associated with Fatal Foal Immunodeficiency Syndrome in the Fell and Dales Pony

    Get PDF
    The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS–affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 – 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding

    Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Get PDF
    Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice

    The IMPROVE guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments)

    Get PDF
    Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information)

    Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach

    Get PDF
    Despite the apparent appropriateness of left ventricular (LV) remodeling following myocardial infarction (MI), it poses an independent risk factor for development of heart failure. There is a paucity of studies into the molecular mechanisms of LV remodeling in large animal species. We took an unbiased molecular approach to identify candidate transcription factors (TFs) mediating the genetic reprogramming involved in post-MI LV remodeling in swine. Left ventricular tissue was collected from remote, non-infarcted myocardium, 3 weeks after MI-induction or sham-surgery. Microarray analysis identified 285 upregulated and 278 downregulated genes (FDR < 0.05). Of these differentially expressed genes, the promoter regions of the human homologs were searched for common TF binding sites (TFBS). Eighteen TFBS were overrepresented >two-fold (p < 0.01) in upregulated and 13 in downregulated genes. Left ventricular nuclear protein extracts were assayed for DNA-binding activity by protein/DNA array. Out of 345 DNA probes, 30 showed signal intensity changes >two-fold. Five TFs were identified in both TFBS and protein/DNA array analyses, which showed matching changes for COUP-TFII and glucocorticoid receptor (GR) only. Treatment of swine with the GR antagonist mifepristone after MI reduced the post-MI increase in LV mass, but LV dilation remained unaffected. Thus, using an unbiased approach to study post-MI LV remodeling in a physiologically relevant large animal model, we identified COUP-TFII and GR as potential key mediators of post-MI remodeling

    The Transcription Factor NFAT5 Is Required for Cyclin Expression and Cell Cycle Progression in Cells Exposed to Hypertonic Stress

    Get PDF
    Background: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. Methodology/Principal Findings: We have generated conditional knockout mice to obtain NFAT5−/− T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5−/− cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5−/− cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5−/− lymphocytes. Conclusions/Significance: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.Molecular and Cellular Biolog

    RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer.

    Get PDF
    BACKGROUND: BRCA1 and BRCA2 (BRCA1/2)-deficient tumors display impaired homologous recombination repair (HRR) and enhanced sensitivity to DNA damaging agents or to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). Their efficacy in germline BRCA1/2 (gBRCA1/2)-mutated metastatic breast cancers has been recently confirmed in clinical trials. Numerous mechanisms of PARPi resistance have been described, whose clinical relevance in gBRCA-mutated breast cancer is unknown. This highlights the need to identify functional biomarkers to better predict PARPi sensitivity. PATIENTS AND METHODS: We investigated the in vivo mechanisms of PARPi resistance in gBRCA1 patient-derived tumor xenografts (PDXs) exhibiting differential response to PARPi. Analysis included exome sequencing and immunostaining of DNA damage response proteins to functionally evaluate HRR. Findings were validated in a retrospective sample set from gBRCA1/2-cancer patients treated with PARPi. RESULTS: RAD51 nuclear foci, a surrogate marker of HRR functionality, were the only common feature in PDX and patient samples with primary or acquired PARPi resistance. Consistently, low RAD51 was associated with objective response to PARPi. Evaluation of the RAD51 biomarker in untreated tumors was feasible due to endogenous DNA damage. In PARPi-resistant gBRCA1 PDXs, genetic analysis found no in-frame secondary mutations, but BRCA1 hypomorphic proteins in 60% of the models, TP53BP1-loss in 20% and RAD51-amplification in one sample, none mutually exclusive. Conversely, one of three PARPi-resistant gBRCA2 tumors displayed BRCA2 restoration by exome sequencing. In PDXs, PARPi resistance could be reverted upon combination of a PARPi with an ataxia-telangiectasia mutated (ATM) inhibitor. CONCLUSION: Detection of RAD51 foci in gBRCA tumors correlates with PARPi resistance regardless of the underlying mechanism restoring HRR function. This is a promising biomarker to be used in the clinic to better select patients for PARPi therapy. Our study also supports the clinical development of PARPi combinations such as those with ATM inhibitors

    Serum tissue inhibitor of matrix metalloproteinase-1 levels are associated with mortality in patients with malignant middle cerebral artery infarction

    Get PDF
    Background: In the last years, circulating matrix metalloproteinases (MMP)-9 levels have been associated with functional outcome in ischemic stroke patients. However the prognostic value of circulating levels of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and MMP-10 in functional outcome of ischemic stroke patients has been scarcely studied. In addition, to our knowledge, serum MMP-9, MMP-10 and TIMP-1 levels in patients with malignant middle cerebral artery infarction (MMCAI) for mortality prediction have not been studied, and these were the objectives of this study. Methods: This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. We included patients with severe MMCAI defined as Glasgow Coma Scale (GCS) lower than 9. We measured circulating levels of MMP-9, MMP-10, TIMP-1, in 50 patients with severe MMCAI at diagnosis and in 50 healthy subjects. Endpoint was 30-day mortality. Results: Patients with severe MMCAI showed higher serum levels of MMP-9 (p = 0.001), MMP-10 (p 239 ng/mL are associated with 30-day mortality (OR = 5.82; 95 % CI = 1.37-24.73; P = 0.02) controlling for GCS and age. The area under the curve for TIMP-1 as predictor of 30-day mortality was 0.81 (95 % CI = 0.67-0.91; P < 0.001). We found an association between circulating levels of TIMP-1 and MMP-10 (rho = 0.45; P = 0.001), plasminogen activator inhibitor (PAI)-1 (rho = 0.53; P < 0.001), and tumor necrosis factor (TNF)-alpha (rho = 0.70; P < 0.001). Conclusions: The most relevant and new findings of our study, were that serum TIMP-1 levels in MMCAI patients were associated with mortality, and could be used as a prognostic biomarker of mortality in MMCAI patients
    corecore