3,006 research outputs found

    Toward an accurate mass function for precision cosmology

    Full text link
    Cosmological surveys aim to use the evolution of the abundance of galaxy clusters to accurately constrain the cosmological model. In the context of LCDM, we show that it is possible to achieve the required percent level accuracy in the halo mass function with gravity-only cosmological simulations, and we provide simulation start and run parameter guidelines for doing so. Some previous works have had sufficient statistical precision, but lacked robust verification of absolute accuracy. Convergence tests of the mass function with, for example, simulation start redshift can exhibit false convergence of the mass function due to counteracting errors, potentially misleading one to infer overly optimistic estimations of simulation accuracy. Percent level accuracy is possible if initial condition particle mapping uses second order Lagrangian Perturbation Theory, and if the start epoch is between 10 and 50 expansion factors before the epoch of halo formation of interest. The mass function for halos with fewer than ~1000 particles is highly sensitive to simulation parameters and start redshift, implying a practical minimum mass resolution limit due to mass discreteness. The narrow range in converged start redshift suggests that it is not presently possible for a single simulation to capture accurately the cluster mass function while also starting early enough to model accurately the numbers of reionisation era galaxies, whose baryon feedback processes may affect later cluster properties. Ultimately, to fully exploit current and future cosmological surveys will require accurate modeling of baryon physics and observable properties, a formidable challenge for which accurate gravity-only simulations are just an initial step.Comment: revised in response to referee suggestions, MNRAS accepte

    Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds

    Full text link
    We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl. 23, 411 (1978)] and Curlander [Ph.D. Thesis, MIT, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Jezek et al. [Phys. Rev. A 65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo's asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys. 43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A 56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.Comment: It was not realized at the time of publication that the lower bound of Theorem 10 has a simple generalization using matrix monotonicity (See [J. Math. Phys. 50, 062102]). Furthermore, this generalization is a trivial variation of a previously-obtained bound of Ogawa and Nagaoka [IEEE Trans. Inf. Theory 45, 2486-2489 (1999)], which had been overlooked by the autho

    The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies

    Get PDF
    We explore fundamental properties of the distribution of low-mass dark matter haloes within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self-abundance-matched mock galaxy catalogues, we show that the distribution of dwarf galaxies in a WDM universe, wherein low-mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low-mass haloes are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low-mass CDM haloes would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider - the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the probability distribution function of small voids - are nearly identical in CDM and WDM. WDM voids are neither larger nor emptier than CDM voids, when constructed from abundance-matched halo catalogues. It is thus a challenge to determine whether the CDM problem of the overabundance of small haloes with respect to the number density of observed dwarf galaxies has a cosmological solution or an astrophysical solution. However, some clues about the dark matter particle and the scatter between the properties of dwarf galaxies and their dark matter halo hosts might be found in the cosmic web of galaxies in future surveys of the local volum

    Non-universality of halo profiles and implications for dark matter experiments

    Full text link
    We explore the cosmological halo-to-halo scatter of the distribution of mass within dark matter halos utilizing a well-resolved statistical sample of clusters from the cosmological Millennium simulation. We find that at any radius, the spherically-averaged dark matter density of a halo (corresponding to the "smooth-component") and its logarithmic slope are well-described by a Gaussian probability distribution. At small radii (within the scale radius), the density distribution is fully determined by the measured Gaussian distribution in halo concentrations. The variance in the radial distribution of mass in dark matter halos is important for the interpretation of direct and indirect dark matter detection efforts. The scatter in mass profiles imparts approximately a 25 percent cosmological uncertainty in the dark matter density at the Solar neighborhood and a factor of ~3 uncertainty in the expected Galactic dark matter annihilation flux. The aggregate effect of halo-to-halo profile scatter leads to a small (few percent) enhancement in dark matter annihilation background if the Gaussian concentration distribution holds for all halo masses versus a 10 percent enhancement under the assumption of a log-normal concentration distribution. The Gaussian nature of the cluster profile scatter implies that the technique of "stacking" halos to improve signal to noise should not suffer from bias.Comment: replaced with accepted mnras versio

    The RMS Survey: 6 cm continuum VLA observations towards candidate massive YSOs in the northern hemisphere

    Full text link
    (Abridged) Context: The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, well-selected sample of massive young stellar objects (MYSOs). We have identified \sim2000 MYSO candidates located throughout the Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. Aims: To identify the populations of UCHII regions and PNe within the sample and examine their Galactic distribution. Method: We have conducted high resolution radio continuum observations at 6 cm towards 659 MYSO candidates in the northern hemisphere (10\degr< l < 250\degr) using the VLA. In addition to these targeted observations we present archival data towards a further 315 RMS sources extracted from a previous VLA survey of the inner Galaxy. Results: We find radio emission towards 272 (\sim27% of the observed sample). Using results from other parts of our multi-wavelength survey we separate these RMS-radio associations into two distinct types of objects, classifying 51 as PNe and a further 208 as either compact or UC HII regions. Using this well selected sample of HII regions we estimate their Galactic scale height to be 0.6\degr. Conclusions: Using radio continuum and archival data we have identified 79 PNe and 391 HII regions within the northern RMS catalogue. We estimate the total fraction of contamination by PNe in the RMS sample is of order 10%. The sample of HII regions is probably the best representation to date of the Galactic population of HII regions as a whole.Comment: Accepted for publication in Astronomy and Astrophysics. 15 pages, 9 figures and 5 tables. Full versions of Tables 3, 4 and 5 and Figs. 2, 4 and 7 will only be available via CDS or the RMS website at http:/www.ast.leeds.ac.uk/cgi-bin/RMS/RMS_VLA_IMAGES.cg

    Neuropsychological constraints to human data production on a global scale

    Get PDF
    Which are the factors underlying human information production on a global level? In order to gain an insight into this question we study a corpus of 252-633 Million publicly available data files on the Internet corresponding to an overall storage volume of 284-675 Terabytes. Analyzing the file size distribution for several distinct data types we find indications that the neuropsychological capacity of the human brain to process and record information may constitute the dominant limiting factor for the overall growth of globally stored information, with real-world economic constraints having only a negligible influence. This supposition draws support from the observation that the files size distributions follow a power law for data without a time component, like images, and a log-normal distribution for multimedia files, for which time is a defining qualia.Comment: to be published in: European Physical Journal

    Edge Currents in Non-commutative Chern-Simons Theory from a New Matrix Model

    Get PDF
    This paper discusses the formulation of the non-commutative Chern-Simons (CS) theory where the spatial slice, an infinite strip, is a manifold with boundaries. As standard star products are not correct for such manifolds, the standard non-commutative CS theory is not also appropriate here. Instead we formulate a new finite-dimensional matrix CS model as an approximation to the CS theory on the strip. A work which has points of contact with ours is due to Lizzi, Vitale and Zampini where the authors obtain a description for the fuzzy disc. The gauge fields in our approach are operators supported on a subspace of finite dimension N+\eta of the Hilbert space of eigenstates of a simple harmonic oscillator with N, \eta \in Z^+ and N \neq 0. This oscillator is associated with the underlying Moyal plane. The resultant matrix CS theory has a fuzzy edge. It becomes the required sharp edge when N and \eta goes to infinity in a suitable sense. The non-commutative CS theory on the strip is defined by this limiting procedure. After performing the canonical constraint analysis of the matrix theory, we find that there are edge observables in the theory generating a Lie algebra with properties similar to that of a non-abelian Kac-Moody algebra. Our study shows that there are (\eta+1)^2 abelian charges (observables) given by the matrix elements (\cal A_i)_{N-1 N-1} and (\cal A_i)_{nm} (where n or m \geq N) of the gauge fields, that obey certain standard canonical commutation relations. In addition, the theory contains three unique non-abelian charges, localized near the N^th level. We show that all non-abelian edge observables except these three can be constructed from the abelian charges above. Using the results of this analysis we discuss the large N and \eta limit.Comment: LaTeX, 16 pages and 2 figures. Comments added in sections 4 and 5. A minor error corrected in section 4. Figures replaced for clarity. Typos correcte

    Finding common ground: identifying and eilciting metacognition in ePortfolios

    Get PDF
    Research has suggested ePortfolios reveal and support students’ metacognition, that is, their awareness, tracking, and evaluation of their learning over time. However, due to the wide variety of purposes and audiences for ePortfolios, it has been unclear whether there might be common criteria for identifying and assessing metacognition in ePortfolios across varied contexts. The purpose of this study was to identify evidence of metacognition across ePortfolios of three distinct populations of students: traditional-age undergraduates, graduate Education students, and adults returning to school to complete a bachelor’s degree. We set out to explore if and how ePortfolios could support these different learners’ growth as reflective, intentional learners and professionals. Through a qualitative coding process, we identified four key metacognition markers across students’ ePortfolios in these three populations. We conclude students can be guided to engage in metacognition in ways through thoughtful assignment design and assessment process, no matter their context

    Seasonal evolution of Aleutian low pressure systems: Implications for the North Pacific subpolar circulation

    Get PDF
    The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres

    ASOHF: a new adaptive spherical overdensity halo finder

    Full text link
    We present and test a new halo finder based on the spherical overdensity (SO) method. This new adaptive spherical overdensity halo finder (ASOHF) is able to identify dark matter haloes and their substructures (subhaloes) down to the scales allowed by the analysed simulations. The code has been especially designed for the adaptive mesh refinement cosmological codes, although it can be used as a stand-alone halo finder for N-body codes. It has been optimised for the purpose of building the merger tree of the haloes. In order to verify the viability of this new tool, we have developed a set of bed tests that allows us to estimate the performance of the finder. Finally, we apply the halo finder to a cosmological simulation and compare the results obtained to those given by other well known publicly available halo finders.Comment: Latex format, 16 pages, 11 postscript figures, accepted for publication in Astronomy and Astrophysic
    corecore