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Abstract. Which are the factors underlying human information production on a global level? In order
to gain an insight into this question we study a corpus of 252–633 mil. publicly available data files on
the Internet corresponding to an overall storage volume of 284–675 Terabytes. Analyzing the file size
distribution for several distinct data types we find indications that the neuropsychological capacity of
the human brain to process and record information may constitute the dominant limiting factor for the
overall growth of globally stored information, with real-world economic constraints having only a negligible
influence. This supposition draws support from the observation that the files size distributions follow a
power law for data without a time component, like images, and a log-normal distribution for multimedia
files, for which time is a defining qualia.

1 Author summary

The generation of new information is limited by two key
factors, by the incurring economic costs and by the ca-
pacity of the human brain to process and store data and
information; the controlling agent needs to retain an over-
all understanding even when data is generated by semi-
automatic processes. These processes are reflected in the
statistical properties of the data files publicly available
on the Internet. Collecting a corpus of 252–633 mil. files
we find that the statistics of the file size distribution are
consistent with the supposition that data production on
a global level is shaped and limited by the neuropsycho-
logical information processing capacity of the brain, with
economic and hardware constraints having a negligible in-
fluence.

2 Introduction

Information production and storage becomes progres-
sively easier. Moore’s law [1] states that technological ad-
vancements lead to a doubling of computing power every
1.5 years and that data storage capacity increases by a fac-
tor of about 100 every 10 years [2]. Data production, which
has the goal to increase knowledge and information, is con-
strained on one side by the economic costs involved and on
the other side by the neuropsychological limitations and
costs of the data generating agents. Maximizing the total
amount of information generated for given amounts of eco-
nomic and neuropsychological resources hence determines
the shape of the file-size distribution [3].
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The economic costs for data production involving
hardware, software and management are proportional to
the amount of data produced. The overall goal of data
production is the generation of information, which can
be measured by Shannon’s information entropy [4]. Max-
imization of information entropy under the constraint of
economic costs leads to file size distributions having expo-
nential tails [3,5,6]. Exponential tails are however absent
both in our data and in an earlier study of the file-size
distribution on a large number of Windows file systems
on desktop computers [7]. The absence of exponential tails
for files hosted on Internet servers indicates that economic
costs are not the limiting factors for data production.

The ability of the human brain to process and record
information determines a subjective value which the pro-
ducing individual attributes to an information source. E.g.
the amount of information gained when increasing the
resolution of a low quality image is substantially higher
then when increasing the resolution of a high quality
photo by the same degree. This relation is known as
Weber-Fechner law and results from underlying neuro-
physiological processes [8–10]. We find that the observed
file-size distributions on the Internet are consistent with
the Weber-Fechner law and propose that neuropsycholog-
ical constraints may be a dominant factor in shaping the
statistics of global data production. This hypothesis is
based on the finding that the distribution functions max-
imizing information entropy, given the neurophysiological
constraints of the Weber-Fechner law, nicely reproduce
the real world file-size distributions.

The neurophysiological constraints resulting from the
Weber-Fechner law also imply that the different maximal
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entropy distributions are qualitatively different for data
formats involving time, like audio and video, compared to
file types not involving time, as it is the case for images.
We find that these distinct predictions are very well in
agreement with the observed files-size distributions.

3 Maximal entropy distribution functions

Given a normalized distribution function P (s) for a corpus
of data, in our case the file-size distribution, its informa-
tion content can be measured by Shannon’s information
entropy [4], −∑

s P (s) log(P (s)). The overall goal of data
production, to attain an optimal information content, is
achieved when the respective information entropy is max-
imal.

We denote with c(s) the cost function associated
with the economic and neurophysiological constrains. and
with λ the respective Lagrange multiplier. The distribu-
tion function P (s) maximizing information entropy given
the constraint c(s) is determined by [3,6]

δΛ[P ] = 0, Λ[P ] =
∑

s

P (s) log(P (s)) − λ
∑

s

P (s)c(s),

(1)
where δΛ[P ] denotes the variation of the functional Λ[P ]
with respect to distribution functions P (s). One obtains
from (1) that P (s) ∼ exp(−λc(s)). The maximal entropy
distributions have then the form

P (s) ∼ exp
[−λss − λ1 log(s) − λ2 log2(s)

]
, (2)

when considering cost functions containing terms propor-
tional to the files size s, to log(s) and to log2(s). The first
term, linear in the size of the files s, corresponds to eco-
nomic costs. The other two terms in the cost functions
correspond to the scaling of neurophysiological resources.

The Weber-Fechner relations state that the neural rep-
resentations of sensory stimuli [8], objects [9–11] and time
perception [12] in the brain scale logarithmically with the
intensity of the stimuli, the number of objects and the
length of the time interval respectively. The perceived
costs and benefits of information generation and process-
ing hence scale logarithmically with physical data volume.
Maximization of information entropy under the logarith-
mic cost function yields a power-law file size distribution,
as described by equation (2).

The perceived cost function will scale furthermore as
the square of the logarithm whenever the data is charac-
terized by two neurophysiological distinct degrees of free-
dom, such as resolution and time. The distribution maxi-
mizing information entropy will then be a log-normal file
size distribution, see equation (2). We find that this is
indeed the case for multimedia files, such as audio and
video files, for which the time is defining qualia. The file
size distributions of non-temporal data types (e.g. texts
and images) follow, on the other side, a power-law.

If the cost function scales as the square of the log-
arithm, the file-size distribution maximizing information
entropy will then have a log-normal form, see equation (2).
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Fig. 1. (Color online) File-size distribution for 252 mil. files
hosted in 7.7 domains. For all files types together and for the
five Mime categories individually. Displayed is the log10 of the
number of files in bins of 1 Kbyte.

We find that this is indeed the case for multimedia files,
such as audio and video, for which the time is defining
qualia. The file size distributions of non-temporal data
types (e.g. texts and images) is closer, on the other side,
to a power-law.

4 Results

We performed a large scale search of publicly available files
on the Internet, utilizing the spider of file search engine
FindFiles.net. For the corpus of hosts to be crawled we se-
lected the collection of all outgoing links in Wikipedia.org
and Dmoz.org, the open directory project, scanning in
both cases all available editions. We crawled, in a first ef-
fort, a total of 7.7 mil. hosts, indexing 252 mil. data files.
The resulting file size distribution is presented in Figure 1
in a log-log representation, spanning nine orders of magni-
tude. The crawling effort was then continued in a second
stage until a corpus of 633 mil. files had been reached,
which we used for a systematic study of the statistical
properties of the resulting file-size distribution.

5 File taxonomy

Data files can be classified according to their Mime or In-
ternet Media Types, e.g. a jpeg file has the Mime type
image/jpeg within the Mime category image/. Five Mime
categories make up about 99.9% of all data formats pub-
licly accessible on the Internet, with application/ con-
tributing 33.2%, audio/ 2.9%, image/ 58.0%, text/ 5.1%
and video/ 0.7% respectively to the total number of files
in the Wikipedia/Dmoz corpus. The average number of
files per host, the average file sizes (in Kbytes) and me-
dian file sizes (in Kbytes) are respectively (10.8|1312|136)
for application/, (0.9|6733|1589) for audio/, (19.0|189|72)
for image/, (1.7|3786|5) for text/ and (0.2|28912|5548) for
video/. The average file size of 189 Kbytes for images in
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Fig. 2. (Color online) File hosting vs. in-degree. Main: the
number of domains (dark blue: few hosts, white: many hosts)
with a given in-degree (x-axis) and hosting a given number of
files (y-axis); all Mime categories without text/ and image/.
Inset: for the 32 mil. hosts receiving incoming links from the
Wikipedia/Dmoz corpus the distribution of the in-degree.

our data has seen an increase relative to the 15 Kbytes
found in an earlier study [13]. The substantial difference
between the respective means and medians is a conse-
quence of the fat tails in the corresponding distribution
functions, compare Figure 1.

6 File size distribution

Figure 2 shows the correlation between the number of files
hosted and the in-degree (the number of inbound links)
of the hosting domain. Important domains tend to have
a high in-degree [14], e.g. the in-degree of Twitter.com
is 805 000 in the Wikipedia/Dmoz corpus. The number
of publicly accessible data files hosted is however anti-
correlated with the in-degree, most data being hosted on
relatively unknown hosts. The power-law for the in-degree
distribution presented in the inset of Figure 2 has re-
mained remarkably constant for the World Wide Web over
the last decades. Our slope of −2.2 for the 32 mil. hosts
within an one-click distance of the Wikipedia/Dmoz cor-
pus is very close to the slopes between −1.94 and −2.1
found in previous studies [15–17].

A manifest property of the file size distribution pre-
sented in Figure 1 is the absence of exponential tails, which
one would have expected [3,5] for an information entropy
production constraint by economic limitations, like costs
and available storage space. The lack of exponential tails
has been observed in an earlier study of the file size dis-
tribution on a large number of Windows file systems on
desktop computers [7]. They have also found that the uti-
lization ratio of desktop hard disks is, on the average, be-
low the capacity. Thus, the full storage volume is rarely
utilized by the average PC user.

A differentiated perspective can be obtained when ex-
amining the functional form of the file size distributions
for distinct Mime categories and types. The tails for the
video and audio file distributions, shown in Figure 3, and
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Fig. 3. (Color online) File-size distribution for videos and au-
dio files (252 mil. files). Solid lines represent an eye guide of a
quadratic form, a log(size) − b log2(size), where a, b > 0.
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Fig. 4. (Color online) File-size distribution for jpeg and gif
images (252 mil. files). The transition from a −2 to a −4 slope
for the jpeg-file distribution occurs at about 4 Mbyte. This
kink can be attributed to the transition from amateur to pro-
fessional image production.

the tails for the file size distributions of jpeg and gif images
presented in Figure 4 differ manifestly.

The linear dependence observed in Figure 4 corre-
sponds to a scale-free power-law P (s) ∝ s−γ of the file size
distribution P (s) with distinct slopes for lossless and lossy
image compression formats, gif and jpeg, respectively. For
video and audio files the file size distribution follows a log-
normal dependence, with log(P (s)) ∝ α log(s) − β log2(s)
fitting the data excellently over more than 5 orders of
magnitude. These two distributions differ qualitatively in
two aspects, namely in the occurrence of the quadratic
term log2(s) for the log-normal distribution and in the
sign of the linear term. The leading term −γ log(s) has
a negative slope for image data formats and a positive
slope α log(s) for the audio/ and video/ Mime categories
(with α, γ > 0). The log-normal dependence observed for
video and audio files is hence qualitatively distinct with
respect to a power-law scaling and cannot be interpreted
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as a quadratic correction to a linear fit within a log-log
data analysis.

The fact that the file size distributions and the distri-
bution tails are qualitatively different for multimedia and
image file formats, strongly indicates that they are deter-
mined by the underlying neurophysiological limitations of
the producing agents. The cost functions are therefore, see
equation (2), proportional to log(s) and log2(s) for data
characterized by one and two degrees of freedom, respec-
tively.

7 Fitting methods

The guide-to-the-eye fits shown in Figures 3 and 4 indicate
that the statistical properties of the file-size distributions
depend on the presence/absence of a time-component.

For a systematic analysis we used the corpus of 633 mil.
files, containing four Mime categories, image/ (64.8%), ap-
plication/ (31%), audio/ (3.5%) and video/ (0.7%). The
evaluation of file size distribution was performed in two
steps. In a first step the files were binned into 1 Kbyte
bins. In a second step we evaluated maximum likelihood
estimates for two model distributions [18].

We analyzed the tails of the respective file size distribu-
tions with two types of discrete probability distributions,
a power law,

p(k) =
1

Zkmin,α
k−α, Zkmin,α =

∞∑

kmin

k−α,

and one having a log-normal form

p(k) =
1

Zkmin,μ,σ

1
k

e−
(log k−μ)2

2σ2 ,

Zkmin,μ,σ =
∞∑

kmin

1
k

e−
(log k−μ)2

2σ2 .

In both cases a lower bound kmin is introduced as a free
parameter, as we don’t expect describing the whole range
of data but only the tails of available data by either a
power-law or log-normal distribution.

The actual fitting procedure consist of following steps:

• We’ve first performed a maximum likelihood estimate
for the lower bound kmin in the range from 1 KB up
to 100 MB.

• Then, we have selected a kmin which minimizes resid-
ual sum of squares (rss) of the differences between the
empirical and the fitted tails of the complementary cu-
mulative distribution functions, that is

rss =
kmax∑

k′=kmin

(Pr (k ≥ k′) − F (k′))2 , (3)

with F (k) =
∑∞

k′=k p(k′) being the complementary cu-
mulative distribution of the model and and Pr(k ≥ k′)
respectively the empirical complementary cumulative
file distribution.

Fig. 5. (Color online) Power-law fit to the complementary
cumulative file-size distribution. The red dashed lines are the
fits, the respective parameters are given in the insets. For Mime
categories audio/, video/ (top) having a time component and
application/, image/ (bottom) having no time component.

Fig. 6. (Color online) Log-normal fit to the complementary
cumulative file-size distribution. The red dashed lines are the
fits, the respective parameters are given in the insets. For Mime
categories audio/, video/ (top) having a time component and
application/, image/ (bottom) having no time component.

We present the best fits for the four Mime categories (im-
age/, application/, audio/ and video/) for a power-law
distribution in Figure 5, and a log-normal distribution in
Figure 6, respectively. In obtaining the maximum likeli-
hood estimate for model parameters we have neglected
files larger then 10 Gbytes, as there are only very few of
these extremely big files, they are hence statistically not
representative.

Comparing the two fits for audio/ and video/ data we
find that the log-normal distribution describes the empir-
ical data substantially better. The rss values are order of
magnitude lower in the case of log-normal fit (see Tab. 1).
The log-normal fit is also able to describe a broader range
of the data then the power-law fit (compare Figs. 5 and 6).
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Table 1. Residual sum of squares, rss, estimated as sum of
square differences between empirical and fitted complementary
cumulative distributions (see Eq. (3)).

power-law fit log-normal fit
image/ 0.7 1.0

application/ 3.3 47.9
audio/ 26.4 2.1
video/ 451.4 2.7

Similarly, a power-law fit for application/ file-size dis-
tribution describes a broader range of the empirical data,
and has an order of magnitude smaller value, then the one
obtained for a log-normal fit (Tab. 1). In the case of the
image file types the evidence in favor of a power-law dis-
tribution is not particularly strong, a consequence of the
kink at around 4 Mbytes, compare Figure 4. Both fits, log-
normal and power-law, describe a similar data range and
the corresponding rss values are of similar magnitude.

8 Discussion

For images the production costs are functionally depen-
dent on one variable, the resolution, which defines, mod-
ulo compression algorithms, the file size. The cost func-
tion for the production of videos depends however on two
distinct quantities, the resolution per frame and the to-
tal number of frames, viz the time needed to shoot the
sequence. Analogously for audio files, with frequency res-
olution and length being the two cost defining quantities.
The cost functions associated with information produc-
tion are hence one- and two-dimensional for images and
audio/video formats respectively. We generically observe
in our data that one-dimensional cost functions result
in power-law file size distributions, two-dimensional cost
functions in log-normal distributions.

For compound Mime categories or types, like text/, su-
perpositions of these two basic distributions are observed.
This correlation between dimensionality of data type and
resulting file size distribution, which can be seen in Fig-
ures 5 and 6, finds a straightforward rationale when ac-
counting for the neuropsychological constraints for data
processing.

Our analysis is based on the assumption that an en-
semble average over many information producing agents
reveals the underlying information theoretical principles
driving data production on a global level. Other studies
have investigated alternative approaches, like the study
of microscopic models capable of generating distribu-
tions with large tails, such as scale-free [19,20] and log-
normal [21,22] and the double Pareto-lognormal distribu-
tion [23]. In a related context a log-normal distribution
has been found for the distribution of city sized and be
related to proporionate growth mechanisms [24–26].

Both approaches, the modelling of generative processes
and the information theoretical perspective, are comple-
mentary and do not exclude each other. Ultimately it
may be possible to derive classes of microscopic gener-
ative models from comprehensive information theoretical

principles, as it has been proposed, e.g., for intrinsic neural
adaption rules generating information entropy maximizing
firing rate distributions [5,27].

We thank the file search engine http://www.findfiles.net

FindFiles.net for support and data collection. The complete
raw data of the Wikipedia/Dmoz corpus is available for down-
load at http://www.findfiles.net/public
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