58 research outputs found

    BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells

    Get PDF
    Chronic myelogenous leukemia (CML) is characterized by the expression of the BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show in both BCR-ABL cells (Mo7e-p210 and BaF/3-p210) and primary CML CD34+ cells that STI571 inhibition of BCR-ABL tyrosine kinase activity results in a G(1) cell cycle arrest mediated by the PI3K pathway. This arrest is associated with a nuclear accumulation of p27(Kip1) and down-regulation of cyclins D and E. As a result, there is a reduction of the cyclin E/Cdk2 kinase activity and of the retinoblastoma protein phosphorylation. By quantitative reverse transcription-PCR we show that BCR-ABL/PI3K regulates the expression of p27(Kip1) at the level of transcription. We further show that BCR-ABL also regulates p27(Kip1) protein levels by increasing its degradation by the proteasome. This degradation depends on the ubiquitinylation of p27(Kip1) by Skp2-containing SFC complexes: silencing the expression of Skp2 with a small interfering RNA results in the accumulation of p27(Kip1). We also demonstrate that BCR-ABL cells show transcriptional up-regulation of Skp2. Finally, expression of a p27(Kip1) mutant unable of being recognized by Skp2 results in inhibition of proliferation of BCR-ABL cells, indicating that the degradation of p27(Kip1) contributes to the pathogenesis of CML. In conclusion, these results suggest that BCR-ABL regulates cell cycle in CML cells at least in part by inducing proteasome-mediated degradation of the cell cycle inhibitor p27(Kip1) and provide a rationale for the use of inhibitors of the proteasome in patients with BCR-ABL leukemias

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Revising endosomal trafficking under insulin receptor activation

    No full text
    The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions

    AGAP2: modulating TGF beta 1-Signaling in the regulation of liver fibrosis

    No full text
    AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-beta 1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-beta 1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGF beta 1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis

    SP1 and RARα regulate AGAP2 expression in cancer

    No full text
    AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is considered a proto-oncogene, but not much is known about AGAP2 gene expression regulation. To get some insight into this process, AGAP2 proximal promoter was cloned and characterised using reporter assays. We have identified SP1 as a transcription factor bound to AGAP2 promoter and required for AGAP2 expression in two different types of cancer cells (KU812, a chronic myeloid leukaemia cell line; and DU145, a prostate cancer cell line): silencing SP1 decreased AGAP2 protein levels. We have also found that all-trans retinoic acid (ATRA) treatment increased AGAP2 protein levels in both cell lines whilst curcumin treatment reduced ATRA-mediated AGAP2 increase. Furthermore, chromatin immunoprecipitation studies revealed the presence of RARα, RXRα and the lysine acetyl transferase PCAF in AGAP2 promoter. Our results provide a novel understanding of AGAP2 expression regulation that could be beneficial to those patients with cancers where AGAP2 is overexpressed

    BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells

    No full text
    Chronic myelogenous leukemia (CML) is characterized by the expression of the BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show in both BCR-ABL cells (Mo7e-p210 and BaF/3-p210) and primary CML CD34+ cells that STI571 inhibition of BCR-ABL tyrosine kinase activity results in a G(1) cell cycle arrest mediated by the PI3K pathway. This arrest is associated with a nuclear accumulation of p27(Kip1) and down-regulation of cyclins D and E. As a result, there is a reduction of the cyclin E/Cdk2 kinase activity and of the retinoblastoma protein phosphorylation. By quantitative reverse transcription-PCR we show that BCR-ABL/PI3K regulates the expression of p27(Kip1) at the level of transcription. We further show that BCR-ABL also regulates p27(Kip1) protein levels by increasing its degradation by the proteasome. This degradation depends on the ubiquitinylation of p27(Kip1) by Skp2-containing SFC complexes: silencing the expression of Skp2 with a small interfering RNA results in the accumulation of p27(Kip1). We also demonstrate that BCR-ABL cells show transcriptional up-regulation of Skp2. Finally, expression of a p27(Kip1) mutant unable of being recognized by Skp2 results in inhibition of proliferation of BCR-ABL cells, indicating that the degradation of p27(Kip1) contributes to the pathogenesis of CML. In conclusion, these results suggest that BCR-ABL regulates cell cycle in CML cells at least in part by inducing proteasome-mediated degradation of the cell cycle inhibitor p27(Kip1) and provide a rationale for the use of inhibitors of the proteasome in patients with BCR-ABL leukemias

    Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation

    No full text
    The aim of our study was to determine the potential mechanism(s) implicated in Imatinib resistance in patients with Ph+ ALL. Resistance of Ph+ ALL cells to Imatinib-induced apoptosis was associated with lack of inhibition of Akt phosphorylation. Addition of the PI3K inhibitor LY294002 to Imatinib significantly increased apoptosis of Ph+ ALL cells. Interestingly, expression of PTEN was reduced in Ph+ ALL cells whichwas due to PTEN promoter hypermethylation. Treatment of Ph+ ALLcells with 5-Aza-2 -deoxycytidinewas associated with an increased expression of PTEN and an increase in cell apoptosis. These results suggest that Imatinib resistance in patients with ALL may be dependent at least in part to PTEN down-regulation due to the abnormal promoter hypermethylation and support the potential role of de-methylating agents for the treatment of patients with Ph+ ALL

    Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation

    No full text
    The aim of our study was to determine the potential mechanism(s) implicated in Imatinib resistance in patients with Ph+ ALL. Resistance of Ph+ ALL cells to Imatinib-induced apoptosis was associated with lack of inhibition of Akt phosphorylation. Addition of the PI3K inhibitor LY294002 to Imatinib significantly increased apoptosis of Ph+ ALL cells. Interestingly, expression of PTEN was reduced in Ph+ ALL cells whichwas due to PTEN promoter hypermethylation. Treatment of Ph+ ALLcells with 5-Aza-2 -deoxycytidinewas associated with an increased expression of PTEN and an increase in cell apoptosis. These results suggest that Imatinib resistance in patients with ALL may be dependent at least in part to PTEN down-regulation due to the abnormal promoter hypermethylation and support the potential role of de-methylating agents for the treatment of patients with Ph+ ALL
    corecore