60 research outputs found

    Tensiones entre el enfoque de derechos de NNyA y la construcción de un imaginario social punitivista en la ciudad de Villa María, Córdoba

    Get PDF
    Hace algunos años, con nuestro equipo de investigación de la UNVM4, venimos problematizando las experiencias de niños/as y adolescentes de sectores populares haciendo hincapié en la heterogeneidad de prácticas y experiencias que protagonizan, así como también construimos las miradas adultocéntricas que los/as definen desde las instituciones barriales o estatales, desde los medios de comunicación masivos e incluso desde cómo son percibidos por dentro y fuera de los enclaves territoriales. Luego de investigar sobre la aplicación del Sistema de Protección Integral de Niños, Niñas y Adolescentes (NNyA) en la ciudad de Villa María, observamos que en la práctica hay desfasajes con respecto a las normativas que condicionan los derechos de los/as jóvenes de la ciudad. En este marco, nos preguntamos por la continuidad de intervenciones tutelares y represivas sobre este grupo poblacional. Sumado a esto, a partir del contexto actual caracterizado por el reforzamiento de un imaginario social que estigmatiza a los/as jóvenes en situación de vulnerabilidad, nos proponemos en el presente trabajo aproximarnos a la Ley Nacional N° 22.803 (Régimen Penal de la Minoridad) y las tensiones que genera su implementación con respecto al Sistema de Protección Integral en Córdoba. Al mismo tiempo realizaremos un relevamiento de un diario local con el objetivo de identificar y analizar las categorías y clasificaciones que contribuyen a la definición de un imaginario social punitivista con respecto a los/as jóvenes y adolescentes de sectores populares.Fil: Monti, Daiana. Universidad Nacional de Villa María.Fil: Remondetti, Lucila. Universidad Nacional de Villa María.Fil: Rodríguez, Juliana. Universidad Nacional de Villa María

    EXPERIÊNCIAS DE ACOMPANHAMENTO AOS ESTUDANTES QUILOMBOLAS DA UNIFESSPA DO PROGRAMA DE MONITORIA

    Get PDF
    Quando pensamos em políticas públicas, automaticamente nos vem em mente práticas e estratégias que tem como objetivo assegurar direitos de grupos para diversas atividades específicas em diferentes âmbitos, desta forma este trabalho tem como objetivo relatar as atividades realizadas e resultados obtidos pelo Programa de Monitoria Quilombola no âmbito da Universidade Federal do Sul Sudeste do Pará nos períodos de agosto de 2017 à fevereiro de 2018 no que diz respeito aos estudantes do Instituto de Ciências Humanas (ICH) e do Instituto de Estudos em Direito e Sociedade (IEDS).Assim o projeto de monitoria quilombola realizado na UNIFESSPA, é um exemplo de aplicação de políticas públicas, onde procura por meio desse programa oferecer monitores discentes que possam auxiliar de forma acadêmica outros discentes que são oriundos de comunidades quilombolas, desta forma relataremos aqui quais as medidas tomadas pelos discentes monitores, o grau de aceitação dos discentes que receberam o auxílio e quais os resultados obtidos com as atividades realizadas.No início, a equipe de bolsistas da monitoria era composta por três discentes, um quilombola do curso de Direito 2016-noturno, Paula Menezes, e duas não quilombolas do curso de História 2014matutino e História 2015-vespertino, Eliza Santos e Juliana de Souza, respectivamente. Entretanto, esta equipe de monitoria foi dividida após a alocação dos discentes que seriam auxiliados por cada monitora, onde as duas discentes bolsistas não quilombolas ficaram com um orientador (que resultou neste trabalho) e a discente bolsista quilombola ficou com outro orientador (que resultou em outro trabalho). Desta forma, no decorrer deste trabalho apresentaremos os dados gerais e específicos após a divisão da equipe.Um dos objetivos da monitoria foi auxiliar esses estudantes para que permaneçam e conclua o seu curso na universidade, com o fim de ser uma ponte de relação de saberes entre o ambiente acadêmico e as comunidades quilombolas. Buscamos entender como o discente quilombola apresenta o seu modo de compreender/modificar o ambiente acadêmico e como este ambiente acadêmico o percebe/modifica a partir do seu ingresso na universidade, tendo em vista como essa relação se reflete no cotidiano quando recebe auxílio para adaptar-se a um novo ambiente: a universidade

    Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems

    Get PDF
    The acid sphingomyelinase (ASM)/ceramide system exhibits a crucial role in the pathology of major depressive disorder (MDD). ASM hydrolyzes the abundant membrane lipid sphingomyelin to ceramide that regulates the clustering of membrane proteins via microdomain and lipid raft organization. Several commonly used antidepressants, such as fluoxetine, rely on the functional inhibition of ASM in terms of their antidepressive pharmacological effects. Transient receptor potential canonical 6 (TRPC6) ion channels are located in the plasma membrane of neurons and serve as receptors for hyperforin, a phytochemical constituent of the antidepressive herbal remedy St. John’s wort. TRPC6 channels are involved in the regulation of neuronal plasticity, which likely contributes to their antidepressant effect. In this work, we investigated the impact of reduced ASM activity on the TRPC6 function in neurons. A lipidomic analysis of cortical brain tissue of ASM deficient mice revealed a decrease in ceramide/sphingomyelin molar ratio and an increase in sphingosine. In neurons with ASM deletion, hyperforin-mediated Ca2+-influx via TRPC6 was decreased. Consequently, downstream activation of nuclear phospho-cAMP response element-binding protein (pCREB) was changed, a transcriptional factor involved in neuronal plasticity. Our study underlines the importance of balanced ASM activity, as well as sphingolipidome composition for optimal TRPC6 function. A better understanding of the interaction of the ASM/ceramide and TRPC6 systems could help to draw conclusions about the pathology of MDD

    Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

    Full text link
    [EN] Production of citrus flavonoids prunin and naringenin was performed selectively through the enzyme hydrolysis of naringin, a flavonoid glycoside abundant in grapefruit wastes. To produce the monoglycoside flavonoid, prunin, crude naringinase from Penicillium decumbens was purified by a single purification step resulting in an enzyme with high -rhamnosidase activity. Both crude and purified enzymes were covalently immobilized on graphene oxide. The activity of the immobilized enzymes at different pH levels and temperatures, and the thermal stability were determined and compared with those exhibited by the free naringinases using specific substrates: p-nitrophenyl--d-glucoside (Glc-pNP) and p-nitrophenyl-alpha-l-rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on GO were tested in the hydrolysis of naringin, giving naringenin and prunin, respectively, in excellent yields. The supported enzymes can be reused many times without loss of activity. The naringinase stabilized on GO has high potential to produce the valuable citrus flavonoids prunin and naringenin.Authors acknowledge the financial support from MICINN Project CTQ-2015-67592-P and Program Severo Ochoa (SEV-2016-0683). JVC thanks Universitat Politecnica de Valencia for predoctoral fellowships. JY and AC thank the support from the National Natural Science Foundation of China (Grant No. 21320102001) and the 111 Project (Grant No. B17020).Carceller-Carceller, JM.; Martínez Galán, JP.; Monti, R.; Bassan, JC.; Filice, M.; Iborra Chornet, S.; Yu, J.... (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry. 21(4):839-849. https://doi.org/10.1039/c8gc03661fS839849214Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004C. Grassin and P.Fauquembergue , in Industrial Enzymology , ed. S. West and T. Godfrey , Nature Publishing Group , New York , 2nd edn, 1996 , p. 225Tsen, H.-Y., & Tsai, S.-Y. (1988). Comparison of the kinetics and factors affecting the stabilities of chitin-immobilized naringinases from two fungal sources. Journal of Fermentation Technology, 66(2), 193-198. doi:10.1016/0385-6380(88)90047-7SOARES, N. F. F., & HOTCHKISS, J. H. (1998). Naringinase Immobilization in Packaging Films for Reducing Naringin Concentration in Grapefruit Juice. Journal of Food Science, 63(1), 61-65. doi:10.1111/j.1365-2621.1998.tb15676.xPuri, M., Kaur, H., & Kennedy, J. F. (2005). Covalent immobilization of naringinase for the transformation of a flavonoid. Journal of Chemical Technology & Biotechnology, 80(10), 1160-1165. doi:10.1002/jctb.1303Norouzian, D., Hosseinzadeh, A., Inanlou, D. N., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501-502. doi:10.1023/a:1008980018481Nishita, M., Park, S.-Y., Nishio, T., Kamizaki, K., Wang, Z., Tamada, K., … Minami, Y. (2017). Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 7(1). doi:10.1038/s41598-016-0028-xZhang, Y., Wu, C., Guo, S., & Zhang, J. (2013). Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnology Reviews, 2(1), 27-45. doi:10.1515/ntrev-2012-0078Mathesh, M., Luan, B., Akanbi, T. O., Weber, J. K., Liu, J., Barrow, C. J., … Yang, W. (2016). Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, 6(7), 4760-4768. doi:10.1021/acscatal.6b00942Li, W., Wen, H., Shi, Q., & Zheng, G. (2016). Study on immobilization of (+) γ-lactamase using a new type of epoxy graphene oxide carrier. Process Biochemistry, 51(2), 270-276. doi:10.1016/j.procbio.2015.11.030Hong, S.-G., Kim, J. H., Kim, R. E., Kwon, S.-J., Kim, D. W., Jung, H.-T., … Kim, J. (2016). Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnology and Bioprocess Engineering, 21(4), 573-579. doi:10.1007/s12257-016-0373-4Liu, F., Piao, Y., Choi, K. S., & Seo, T. S. (2012). Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon, 50(1), 123-133. doi:10.1016/j.carbon.2011.07.061Wang, Z., Zhou, X., Zhang, J., Boey, F., & Zhang, H. (2009). Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. The Journal of Physical Chemistry C, 113(32), 14071-14075. doi:10.1021/jp906348xSingh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993-65011. doi:10.1039/c6ra07626bVila-Real, H., Alfaia, A. J., Bronze, M. R., Calado, A. R. T., & Ribeiro, M. H. L. (2011). Enzymatic Synthesis of the Flavone Glucosides, Prunin and Isoquercetin, and the Aglycones, Naringenin and Quercetin, with Selective α-L-Rhamnosidase and β-D-Glucosidase Activities of Naringinase. Enzyme Research, 2011, 1-11. doi:10.4061/2011/692618Mamma, D., Kalogeris, E., Hatzinikolaou, D. G., Lekanidou, A., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Biochemical Characterization of the Multi-enzyme System Produced byPenicillium decumbensGrown on Rutin. Food Biotechnology, 18(1), 1-18. doi:10.1081/fbt-120030382Chang, H.-Y., Lee, Y.-B., Bae, H.-A., Huh, J.-Y., Nam, S.-H., Sohn, H.-S., … Lee, S.-B. (2011). Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chemistry, 124(1), 234-241. doi:10.1016/j.foodchem.2010.06.024Yadav, S., Yadava, S., & Yadav, K. D. S. (2013). Purification and characterization of α-l-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochemistry, 48(9), 1348-1354. doi:10.1016/j.procbio.2013.05.001Zhu, Y., Jia, H., Xi, M., Xu, L., Wu, S., & Li, X. (2017). Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chemistry, 214, 39-46. doi:10.1016/j.foodchem.2016.06.108Zhang, T., Yuan, W., Li, M., Miao, M., & Mu, W. (2018). Purification and characterization of an intracellular α-l-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001. Food Chemistry, 269, 63-69. doi:10.1016/j.foodchem.2018.06.134Vila-Real, H., Alfaia, A. J., Rosa, J. N., Gois, P. M. P., Rosa, M. E., Calado, A. R. T., & Ribeiro, M. H. (2011). α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: Activity and stability studies. Journal of Biotechnology, 152(4), 147-158. doi:10.1016/j.jbiotec.2010.08.005Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7Erickson, H. P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 11(1), 32-51. doi:10.1007/s12575-009-9008-xZhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 26(9), 6083-6085. doi:10.1021/la904014zMarolewski, A. (1996). Fundamentals of Enzyme Kinetics. Revised Edition By Athel Cornish-Bowden. Portland Press, London. 1995. xiii + 343 pp. 17.5 cm × 24.5 cm. ISBN 1-85578-072-0. $29.00. Journal of Medicinal Chemistry, 39(4), 1010-1011. doi:10.1021/jm9508447Romero, C., Manjón, A., Bastida, J., & Iborra, J. (1985). A method for assaying the rhamnosidase activity of naringinase. Analytical Biochemistry, 149(2), 566-571. doi:10.1016/0003-2697(85)90614-1Fox, D. W., Savage, W. L., & Wender, S. H. (1953). Hydrolysis of Some Flavonoid Rhamnoglucosides to Flavonoid Glucosides. Journal of the American Chemical Society, 75(10), 2504-2505. doi:10.1021/ja01106a507Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0Heukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis, 6(3), 103-112. doi:10.1002/elps.1150060302Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 42(15), 6223-6235. doi:10.1039/c3cs60075

    Covalent Immobilization of Naringinase over Two-Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices

    Full text link
    This is the peer reviewed version of the following article: J. M. Carceller, J. P. Martínez Galán, R. Monti, J. C. Bassan, M. Filice, J. Yu, M. J. Climent, S. Iborra, A. Corma, ChemCatChem 2020, 12, 4502, which has been published in final form at https://doi.org/10.1002/cctc.202000320. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The crude naringinase from Penicillium decumbens and a purified naringinase with high a-L-rhamnosidase activity could be covalently immobilized on two-dimensional zeolite ITQ-2 after surface modification with glutaraldehyde. The influence of pH and temp. on the enzyme activity (in free and immobilized forms) as well as the thermal stability were detd. using the specific substrate: p-nitrophenyl-alpha-L-rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on ITQ-2 were applied in the hydrolysis of naringin, giving the flavonoids naringenin and prunin resp. with a conversion >90% and excellent selectivity. The supported enzymes showed long term stability, being possible to perform up to 25 consecutive cycles without loss of activity, showing its high potential to produce the valuable citrus flavonoids prunin and naringenin. We have also succeeded in the application of the immobilized crude naringinase on ITQ-2 for debittering grapefruit juices in a continuous process that was maintained operating for 300 h, with excellent results.The authors acknowledge financial support from PGC2018-097277-B-100 (MCIU/AEI/FEDER,UE) project and Program Severo Ochoa (SEV-2016-0683). Jilin agreement 111 Project (Grant No. B17020). JMC thanks to Universitat Politecnica de Valencia for predoctoral fellowships.Carceller-Carceller, JM.; Martínez Galán, JP.; Monti, R.; Bassan, JC.; Filice, M.; Yu, J.; Climent Olmedo, MJ.... (2020). Covalent Immobilization of Naringinase over Two-Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem. 12(18):4502-4511. https://doi.org/10.1002/cctc.202000320S450245111218Puri, M., & Banerjee, U. C. (2000). Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances, 18(3), 207-217. doi:10.1016/s0734-9750(00)00034-3Vila-Real, H., Alfaia, A. J., Rosa, M. E., Calado, A. R., & Ribeiro, M. H. L. (2010). An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochemistry, 45(6), 841-850. doi:10.1016/j.procbio.2010.02.004RoitNer, M., Schalkhammer, T., & Pittner, F. (1984). Preparation of prunin with the help of immobilized naringinase pretreated with alkaline buffer. Applied Biochemistry and Biotechnology, 9(5-6), 483-488. doi:10.1007/bf02798402Ribeiro, I. A., Rocha, J., Sepodes, B., Mota-Filipe, H., & Ribeiro, M. H. (2008). Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. Journal of Molecular Catalysis B: Enzymatic, 52-53, 13-18. doi:10.1016/j.molcatb.2007.10.011Puri, M., Marwaha, S. S., Kothari, R. M., & Kennedy, J. F. (1996). Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering. Critical Reviews in Biotechnology, 16(2), 145-155. doi:10.3109/07388559609147419Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435-456. doi:10.1016/j.biotechadv.2015.03.006Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904. doi:10.1002/adsc.201100534ONO, M., TOSA, T., & CHIBATA, I. (1978). Preparation and properties of immobilized naringinase using tannin-aminohexyl cellulose. Agricultural and Biological Chemistry, 42(10), 1847-1853. doi:10.1271/bbb1961.42.1847Tsen, H.-Y., & Tsai, S.-Y. (1988). Comparison of the kinetics and factors affecting the stabilities of chitin-immobilized naringinases from two fungal sources. Journal of Fermentation Technology, 66(2), 193-198. doi:10.1016/0385-6380(88)90047-7SOARES, N. F. F., & HOTCHKISS, J. H. (1998). Naringinase Immobilization in Packaging Films for Reducing Naringin Concentration in Grapefruit Juice. Journal of Food Science, 63(1), 61-65. doi:10.1111/j.1365-2621.1998.tb15676.xPuri, M., Kaur, H., & Kennedy, J. F. (2005). Covalent immobilization of naringinase for the transformation of a flavonoid. Journal of Chemical Technology & Biotechnology, 80(10), 1160-1165. doi:10.1002/jctb.1303Lei, S., Xu, Y., Fan, G., Xiao, M., & Pan, S. (2011). Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit. Applied Surface Science, 257(9), 4096-4099. doi:10.1016/j.apsusc.2010.12.003Luo, J., Li, Q., Sun, X., Tian, J., Fei, X., Shi, F., … Liu, X. (2019). The study of the characteristics and hydrolysis properties of naringinase immobilized by porous silica material. RSC Advances, 9(8), 4514-4520. doi:10.1039/c9ra00075eNunes, M. A. P., Vila-Real, H., Fernandes, P. C. B., & Ribeiro, M. H. L. (2009). Immobilization of Naringinase in PVA–Alginate Matrix Using an Innovative Technique. Applied Biochemistry and Biotechnology, 160(7), 2129-2147. doi:10.1007/s12010-009-8733-6Busto, M. D., Meza, V., Ortega, N., & Perez-Mateos, M. (2007). Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chemistry, 104(3), 1177-1182. doi:10.1016/j.foodchem.2007.01.033Huang, W., Zhan, Y., Shi, X., Chen, J., Deng, H., & Du, Y. (2017). Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. International Journal of Biological Macromolecules, 98, 630-636. doi:10.1016/j.ijbiomac.2017.02.018Gong, X., Xie, W., Wang, B., Gu, L., Wang, F., Ren, X., … Yang, L. (2017). Altered spontaneous calcium signaling of in situ chondrocytes in human osteoarthritic cartilage. Scientific Reports, 7(1). doi:10.1038/s41598-017-17172-wCarceller, J. M., Martínez Galán, J. P., Monti, R., Bassan, J. C., Filice, M., Iborra, S., … Corma, A. (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry, 21(4), 839-849. doi:10.1039/c8gc03661fPuri, M., Marwaha, S. S., & Kothari, R. M. (1996). Studies on the applicability of alginate-entrapped naringiase for the debittering of kinnow juice. Enzyme and Microbial Technology, 18(4), 281-285. doi:10.1016/0141-0229(95)00100-xNorouzian, D., Hosseinzadeh, A., Inanlou, D. N., & Moazami, N. (1999). World Journal of Microbiology and Biotechnology, 15(4), 501-502. doi:10.1023/a:1008980018481Saallah, S., Naim, M. N., Lenggoro, I. W., Mokhtar, M. N., Abu Bakar, N. F., & Gen, M. (2016). Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnology Reports, 10, 44-48. doi:10.1016/j.btre.2016.03.003Cipolatti, E. P., Valério, A., Henriques, R. O., Moritz, D. E., Ninow, J. L., Freire, D. M. G., … de Oliveira, D. (2016). Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances, 6(106), 104675-104692. doi:10.1039/c6ra22047aCorma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:13.0.co;2-wGallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Margarit, V. J., Díaz-Rey, M. R., Navarro, M. T., Martínez, C., & Corma, A. (2018). Direct Synthesis of Nano-Ferrierite along the 10-Ring-Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie, 130(13), 3517-3521. doi:10.1002/ange.201711418Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv., 4(4), 1583-1600. doi:10.1039/c3ra45991hSmith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., … Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. doi:10.1016/0003-2697(85)90442-7Marolewski, A. (1996). Fundamentals of Enzyme Kinetics. Revised Edition By Athel Cornish-Bowden. Portland Press, London. 1995. xiii + 343 pp. 17.5 cm × 24.5 cm. ISBN 1-85578-072-0. $29.00. Journal of Medicinal Chemistry, 39(4), 1010-1011. doi:10.1021/jm9508447Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030Cheong, M. W., Liu, S. Q., Zhou, W., Curran, P., & Yu, B. (2012). Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chemistry, 135(4), 2505-2513. doi:10.1016/j.foodchem.2012.07.012Fox, D. W., Savage, W. L., & Wender, S. H. (1953). Hydrolysis of Some Flavonoid Rhamnoglucosides to Flavonoid Glucosides. Journal of the American Chemical Society, 75(10), 2504-2505. doi:10.1021/ja01106a507Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a02

    Seguimiento de la salud del niño y la longitudinalidad del cuidado

    Get PDF
    Estudo reflexivo com o objetivo de apresentar, na perspectiva da hermenêutica filosófica, elementos relevantes para o seguimento da saúde da criança em atenção primária à saúde. A assistência à saúde da criança tem como eixo norteador o processo de crescimento e desenvolvimento na infância, sendo fundamental conhecer as escolhas e tomadas de decisão das famílias, estimular a produção de narrativas, fortalecer virtudes e experiências cotidianas, contribuindo para enriquecer o cuidado e apreendê-lo numa perspectiva integradora, contingencial, longitudinal e suficientemente boa. O seguimento da criança pode ser tomado como uma tecnologia de cuidado em saúde que não pressupõe um saber a priori, mas remete a uma reconstrução de saberes e práticas com novas dimensões para a produção de cuidados

    The GTPase RAB20 is a HIF target with mitochondrial localization mediating apoptosis in hypoxia

    Get PDF
    AbstractHypoxia is a common pathogenic stress, which requires adaptive activation of the Hypoxia-inducible transcription factor (HIF). In concert transcriptional HIF targets enhance oxygen availability and simultaneously reduce oxygen demand, enabling survival in a hypoxic microenvironment. Here, we describe the characterization of a new HIF-1 target gene, Rab20, which is a member of the Rab family of small GTP-binding proteins, regulating intracellular trafficking and vesicle formation. Rab20 is directly regulated by HIF-1, resulting in rapid upregulation of Rab20 mRNA as well as protein under hypoxia. Furthermore, exogenous as well as endogenous Rab20 protein colocalizes with mitochondria. Knockdown studies reveal that Rab20 is involved in hypoxia induced apoptosis. Since mitochondria play a key role in the control of cell death, we suggest that regulating mitochondrial homeostasis in hypoxia is a key function of Rab20. Furthermore, our study implicates that cellular transport pathways play a role in oxygen homeostasis. Hypoxia-induced Rab20 may influence tissue homeostasis and repair during and after hypoxic stress

    Immobilization of trypsin in lignocellulosic waste material to produce peptides with bioactive potential from whey protein

    Get PDF
    ABSTRACT: In this study, trypsin (Enzyme Comission 3.4.21.4) was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP) with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 ̋C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ̆ 0.01 U ̈ g ́1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides

    Hidrólise das proteínas do soro do queijo utilizando a alcalase imobilizada em pó de sabugo de milho / Hydrolysis of cheese whey proteins using immobilized alkali powder from corn cob

    Get PDF
    A hidrólise das proteínas do soro de queijo foi feita a 50º C, pH=9, 100 rpm por 24 h, utilizando o derivado alcalase glioxil pó de sabugo de milho (AGSM) e os resultados comparados com o derivado alcalase glioxil agarose (AGA) e enzima livre (AL). AL apresentou menor KM = 0,243mMe maior grau de hidrólise (DH)=59,63% com relação aos derivados, provavelmente devido aos efeitos difusionais da imobilização, dificultando o acesso do substrato a enzima. AGSM apresentou melhor estabilidade térmica (62 e 15,5 vezes maior do que a AL e AGA respectivamente). A SDS-PAGE demonstrou a ocorrência de hidrólise utilizando a AGSM, além do DH=26,59% e 3,29U/mg. Confirmando esta hidrólise, o perfil cromatográfico mostrou um aumento no número de picos em diferentes tempos de retenção. Resultados semelhantes foram encontrados para AGA, portanto, o SM representa uma fonte inovativa, de baixo custo, para imobilização da alcalase e obtenção de hidrolisados proteicos. 

    Natural Resistance of Leishmania infantum to Miltefosine Contributes to the Low Efficacy in the Treatment of Visceral Leishmaniasis in Brazil

    Get PDF
    In India visceral leishmaniasis (VL) caused by Leishmania donovani has been successfully treated with miltefosine with a cure rate of > 90%. To assess the efficacy and safety of oral miltefosine in L. infantum-causing Brazilian VL patients, a phase II, open-label, dose-escalation study of oral miltefosine was conducted in children (ages 2-12) and adolescent-adults (ages 13-60). Definitive cure was assessed at a 6 month follow-up visit. The cure rate was only 42% (6 out of 14 patients) with the recommended 28 days of therapy and 68% (19 out of 28 patients) with an extended treatment of 42 days. The in vitro miltefosine susceptibility profile of intracellular amastigote stages of the pre-treatment isolates, from cured and relapsed patients, showed a positive correlation with clinical outcome. The IC50 mean (SEM) of eventual cures was 5.1 (0.4) µM whereas that of eventual failures was 12.8 (1.9) µM (P = 0.0002). An IC50 below or above 8.0 µM predicts cure or failure, respectively with 82% sensitivity and 100% specificity. The finding of L. infantum amastigotes resistant to miltefosine in isolates from patients who eventually failed treatment, strongly suggests natural resistance to this drug, as miltefosine had never been used in Brazil before this trial was carried out
    corecore