125 research outputs found

    Modelling the Evolutionary Dynamics of Viruses within Their Hosts: A Case Study Using High-Throughput Sequencing

    Get PDF
    Uncovering how natural selection and genetic drift shape the evolutionary dynamics of virus populations within their hosts can pave the way to a better understanding of virus emergence. Mathematical models already play a leading role in these studies and are intended to predict future emergences. Here, using high-throughput sequencing, we analyzed the within-host population dynamics of four Potato virus Y (PVY) variants differing at most by two substitutions involved in pathogenicity properties. Model selection procedures were used to compare experimental results to six hypotheses regarding competitiveness and intensity of genetic drift experienced by viruses during host plant colonization. Results indicated that the frequencies of variants were well described using Lotka-Volterra models where the competition coefficients βij exerted by variant j on variant i are equal to their fitness ratio, rj/ri. Statistical inference allowed the estimation of the effect of each mutation on fitness, revealing slight (s = −0.45%) and high (s = −13.2%) fitness costs and a negative epistasis between them. Results also indicated that only 1 to 4 infectious units initiated the population of one apical leaf. The between-host variances of the variant frequencies were described using Dirichlet-multinomial distributions whose scale parameters, closely related to the fixation index FST, were shown to vary with time. The genetic differentiation of virus populations among plants increased from 0 to 10 days post-inoculation and then decreased until 35 days. Overall, this study showed that mathematical models can accurately describe both selection and genetic drift processes shaping the evolutionary dynamics of viruses within their hosts

    Populations of the Beet Cyst Nematode Heterodera schachtii Exhibit Strong Differences in Their Life-History Traits Across Changing Thermal Conditions

    Get PDF
    It is widely accepted that climate has an essential influence on the distribution of species and that temperature is the major abiotic factor that affects their life-history traits. Species with very restricted active dispersal abilities and a wide geographical distribution are thus expected to encompass distinct populations adapted to contrasted local conditions. The beet cyst nematode Heterodera schachtii is a good biological model to study temperature adaptation in populations collected from different environments. Here, we tested the effect of temperature on H. schachtii life-history traits using seven field populations from Morocco, Spain, France, Germany, Austria, Poland and Ukraine. We tested hatching and multiplication rates of each population at different temperatures, as well as hatching rates of each population after storage at different temperatures – simulating survival conditions during the inter-cropping period. Results showed a strong temperature effect on the life-history traits explored. Temperature impact on hatching (at different temperatures and after storage at different temperatures) depended on the origin of populations, separating southern from northern ones. Surprisingly, low temperatures influenced hatching less in southern populations. However, for these populations, a storage period at low temperatures strongly reduce subsequent hatching. Conversely, nematode multiplication was not differentially affected by temperatures, as favorable conditions for the host are also favorable for the parasite. Finally, a significant correlation between the genetic diversity and the level of specialization showed that the less diverse populations were more specialized than the more diverse ones

    A Trade-Off Between Sporangia Size and Number Exists in the Potato Late Blight Pathogen Phytophthora infestans, and Is Not Altered by Biotic and Abiotic Factors

    Get PDF
    The negative relationship between offspring size and number is a classic example of trade-off between life-history traits, reported many times in animal and plant species. Here, we wanted to ascertain whether such a trade-off occurred in the oomycete Phytophthora infestans, and whether it was impacted by biotic and abiotic factors. We thus conducted three infection experiments under controlled conditions and measured the number and the size of sporangia (asexual propagules) produced on potato by different P. infestans isolates. In all experiments, we observed a negative relationship between sporangia size and number, demonstrating the existence of a trade-off. Moreover, although the potato host cultivar, temperature and host of origin (tomato or potato) all affected sporangia number, sporangia size or both, none of these biotic and abiotic factors did change the trade-off. Therefore, the trade-off between sporangia size and number could maintain the polyphenism for these traits in P. infestans populations, and favors the coexistence of distinct reproductive strategies within this species. Our results emphasize the relevance to focus on the relationship between offspring size and number in other fungal plant pathogens, as well as to study the impact of offspring size on fitness-linked traits (virulence and disease lesion development) in these organisms

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions

    Get PDF
    Understanding the relationships between host range and pathogenicity for parasites, and between the efficiency and scope of immunity for hosts are essential to implement efficient disease control strategies. In the case of plant parasites, most studies have focused on describing qualitative interactions and a variety of genetic and evolutionary models has been proposed in this context. Although plant quantitative resistance benefits from advantages in terms of durability, we presently lack models that account for quantitative interactions between plants and their parasites and the evolution of these interactions. Nestedness and modularity are important features to unravel the overall structure of host-parasite interaction matrices. Here, we analysed these two features on 32 matrices of quantitative pathogenicity trait data gathered from 15 plant-parasite pathosystems consisting of either annual or perennial plants along with fungi or oomycetes, bacteria, nematodes, insects and viruses. The performance of several nestedness and modularity algorithms was evaluated through a simulation approach, which helped interpretation of the results. We observed significant modularity in only six of the 32 matrices, with two or three modules detected. For three of these matrices, modules could be related to resistance quantitative trait loci present in the host. In contrast, we found high and significant nestedness in 30 of the 32 matrices. Nestedness was linked to other properties of plant-parasite interactions. First, pathogenicity trait values were explained in majority by a parasite strain effect and a plant accession effect, with no parasite-plant interaction term. Second, correlations between the efficiency and scope of the resistance of plant genotypes, and between the host range breadth and pathogenicity level of parasite strains were overall positive. This latter result questions the efficiency of strategies based on the deployment of several genetically-differentiated cultivars of a given crop species in the case of quantitative plant immunity

    Réponse adaptative des populations de Phytophthora infestans, agent du mildiou de la pomme de terre, au déploiement en culture de son hôte Solanum tuberosum

    No full text
    Diplôme : Dr. d'UniversiteUnderstanding the consequences of selection pressure by host plants on pathogen population structures is crucial for the effective management of durable resistance to plant diseases. The objectives of this work were i) to assess the impact of selection on the phenotypic and genotypic structure of the local pathogen population of Phytophthora infestans, the causal agent of potato late blight, as exerted by hosts with various levels of resistance; ii) to determine if recurrent selection pressure applied by prevalent cultivars in different potato production areas led to local adaptation of P. infestans populations; and iii) to test the hypothesis of a trade-off between aggressiveness during the epidemic phase of the disease and the over-winter survival capacity in clonal P. infestans populations. Our results showed that selection by host applies on both qualitative (virulence) and quantitative (aggressiveness) components of pathogenicity. The large variation in aggressiveness allowed adaptation of P. infestans populations, which led to the erosion of partial resistance. French P. infestans populations proved to be adapted to the cultivar prevalent nationally (Bintje), but not to locally prevalent cultivars. Local adaptation takes place in this system, but was detectable only on a very large spatial scale, for populations isolated geographically. Our results also showed that during winter survival there was no counter-selection of the most aggressive strains by over-mortality of infected tubers. This work highlights the importance of considering all the evolutionary forces in order to describe and understand the adaptive response of pathogen populations. In the future, modelling of demogenetic processes will allow the development and validation of effective strategies for resistance management.Comprendre la sélection exercée par la plante hôte et ses conséquences sur la structure des populations pathogènes est essentiel pour gérer durablement les résistances des plantes aux maladies. Les objectifs de ce travail sont i) d'appréhender l'impact de la sélection imposée par des hôtes présentant différents niveaux de résistance, sur la structure phénotypique et génotypique d'une population locale de Phytophthora infestans, agent du mildiou de la pomme de terre ; ii) de déterminer si les pressions de sélection récurrentes exercées par les variétés dominant chaque bassin de production entraînent l'adaptation locale des populations de P. infestans et iii) de tester l'hypothèse d'un trade-off entre agressivité pendant la phase épidémique et capacité de survie hivernale dans des populations clonales de P. infestans. Nos résultats montrent que la sélection par l'hôte agit sur les composantes qualitative (virulence) et quantitative (agressivité) du pouvoir pathogène. La variation importante pour l'agressivité permet une adaptation des populations de P. infestans, pouvant aboutir à l'érosion de résistances partielles. Les populations françaises de P. infestans apparaissent adaptées à la variété dominante nationalement (Bintje), mais pas aux variétés localement dominantes. Le processus d'adaptation locale opère dans ce pathosystème, mais n'est détectable qu'à une échelle spatiale très vaste, pour des populations géographiquement déconnectées. Nos résultats montrent également que lors de la phase de survie hivernale, il n'y a pas de contre-sélection des souches les plus agressives par surmortalité des tubercules infectés. Ce travail souligne l'importance de considérer l'ensemble des forces évolutives pour décrire et comprendre la réponse adaptative des populations pathogènes. La modélisation des processus démogénétiques permettra de proposer et de valider des stratégies de gestion optimales des résistances variétales
    corecore