11 research outputs found
Y-Split Recession of the Medial Rectus Muscle as a Secondary and/or Unilateral Procedure in the Treatment of Esotropia with Distance/Near Disparity
Introduction. In esotropia with larger angles > near than at distance, splitting of the medial rectus muscle has been suggested as a treatment option. Previous reports of bilateral medial rectus Y-splitting as a first intervention showed a reduction of the distance/near disparity with fewer side effects compared to posterior fixation surgery. We address whether a medial rectus Y-splitting as a secondary and/or a unilateral procedure also reduce distance/near disparity. Materials and Methods. We retrospectively reviewed the charts of four patients undergoing Y-split recession as a second and/or unilateral surgery. Main outcomes were distance/near disparity and squint angles. Results and Discussion. Three of the four patients had undergone unilateral Y-splitting of the medial rectus as a secondary surgery, three as a unilateral procedure. Mean distance/near disparity was reduced from 17 PD preoperatively to zero at the final follow-up (FU). Preoperative angles ranged from 45 PD to 66 PD at near and from 25 PD to 55 PD at distance. At the final FU, these angles ranged from 0 PD to 20 PD at near and at distance. Mean FU was 42 months (range: 12–60 months). Conclusion. Y-split recession as a secondary and/or unilateral surgery for distance/near esotropia can reduce distance/near disparity with good long-term results. Residual esotropia can be corrected by adding resection of the lateral rectus muscle
Directional turnover towards larger-ranged plants over time and across habitats
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation
<scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe
AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec
Medial Rectus Tendon Elongation with Bovine Pericard (Tutopatch®) in Thyroid-Associated Orbitopathy: A Long-Term Follow-Up including Oculodynamic MRI
Introduction. To assess long-term efficacy of bimedial rectus tendon elongation with Tutopatch in thyroid-associated orbitopathy (TAO). Materials and Methods. Retrospective chart review of 5 patients with TAO undergoing bimedial rectus recession with Tutopatch tendon elongation between 2009 and 2015. We analyzed horizontal squint angles, motility, field of binocular single vision, dose effect of surgery, and when possible oculodynamic MRI (OD-MRI). Dose effect and motility were compared to 4 TAO patients with conventional bimedial recession. Results and Discussion. In the Tutopatch group, preoperative angles ranged from 14 to 120∆ (prism diopters) at distance and 12–120∆ at near. Mean dose effect was 3.63∆/mm for the distance and 3.43∆/mm for the near angle. All patients were orthotropic at final FU (ranging from 1 to 10 years). OD-MRI showed the elasticity of Tutopatch. In the conventional recession group, preoperative angles ranged between 18 and 35∆ at distance and 12–33∆ at near. At final FU, 2 patients had reverted to their underlying microesotropia <2∆, 1 patient was orthophor, and one was reoperated for a remaining esotropia of 14∆. Dose effect was 2.95∆/mm for the distance and 2.18∆/mm for the near angle. Motility improved in both groups even after 3 months. Conclusions. Dose effect for medial rectus recessions with Tutopatch in TAO was higher than previously reported, presenting a good alternative to treat large squint angles while preserving good motility
Consistent replacement of small- by large-ranged plant species across habitats
The direction and magnitude of long-term changes in local plant species richness are highly variable among studies, while species turnover is ubiquitous. However, it is unknown whether the nature of species turnover is idiosyncratic or whether certain types of species are consistently gained or lost across different habitats. To address this question, we analyzed the trajectories of 1,827 vascular plant species over time intervals of up to 78 years at 141 sites in three habitats in Europe – mountain summits, forests, and lowland grasslands. Consistent across all habitats, we found that plant species with small geographic ranges tended to be replaced by species with large ranges, despite habitat-specific trends in species richness. Our results point to a predictable component of species turnover, likely explained by aspects of species’ niches correlated with geographic range size. Species with larger ranges tend to be associated with nutrient-rich sites and we found community composition shifts towards more nutrient-demanding species in all three habitats. Global changes involving increased resource availability are thus likely to favor large-ranged, nutrient-demanding species, which are typically strong competitors. Declines of small-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. Our study highlights the need to consider the traits of species such as the geographic range size when predicting how ecological communities will respond to global change
Directional turnover towards larger-ranged plants over time and across habitats
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation
Directional turnover towards larger-ranged plants over time and across habitats
International audienceSpecies turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation
Directional turnover towards larger-ranged plants over time and across habitats
Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation