52 research outputs found

    Searching for grapevine fungal trunk pathogens on cover crop roots

    Get PDF
    The potential role of cover crops as alternative hosts for soil-borne fungi plant diseases has not been thoroughly explored. Root samples from cover crops from experimental plots in the CORE Organic Cofund BIOVINE project has been analysed to find out more

    Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain

    Full text link
    [EN] Fusicladium eriobotryae is the causal agent of loquat scab, the main disease damaging fruit, leaves and young twigs of this crop. A two-growing season study (2015¿2016 and 2016¿2017) was carried out in two loquat orchards (cv ¿Algerie¿) to determine the inoculum sources of F. eriobotryae by direct observation of conidia, pathogen isolation on culture media and detection using a new real time PCR protocol developed in this study. One-year-old twigs, fruit peduncles and fruit mummies were randomly sampled three times per growing season on each orchard, and inflorescences only at flowering. Conidia of F. eriobotryae were not found and the isolation of the pathogen was neither possible from any sample in both seasons. Specific primers FUG2F and FUG2R, were designed to detect and quantify DNA of F. eriobotryae on plant material, with a limit of detection (LOD) established at 48.6 fg/¿l. The DNA of the pathogen was not detected by real time PCR in fruit mummies nor inflorescences. It was detected in fruit peduncles and twigs in the season 2016¿2017 with concentrations ranging from 50 to 2742 fg/¿l, confirming that this two loquat organs might act as potential inoculum sources for F. eriobotryae. The detection of F. eriobotryae only in this season agrees with the predictions of an epidemiological model for this pathogen. Our results indicate that in years with a high disease pressure, fruit twigs and peduncles might act as a source of inoculum of new infections the following year.This study was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) grant number RTA2013-00004-C03-03, and FEDER Funds. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. We thank the E. Soler from the Cooperativa Agrícola de Callosa d En Sarrià (Alicante, Spain) for his collaboration during orchard sampling, and A. Ramón-Albalat and V. Serra for their technical assistance.Elena-Jiménez, G.; Berbegal Martinez, M.; González Domínguez, E.; Armengol Fortí, J. (2020). Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain. European Journal of Plant Pathology. 156:425-436. https://doi.org/10.1007/s10658-019-01892-yS425436156Acuña, R. P. (2010). Compendio de bacterias y hongos de frutales y vides en Chile. Santiago de Chile: Servicio Agrícola y Ganadero.Bilodeau, G. J., Koike, S. T., Uribe, P., & Martin, F. N. (2012). Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102, 331–343.Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Hipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.Caballero, P., & Fernández, M. A. (2002). Loquat, production and market. Options Méditerranéennes Serie A, 58, 11–20.Ciliberti, N., Fermaud, M., Languasco, L., & Rossi, V. (2015). Influence of fungal strain, temperature, and wetness duration of infection of grapevine inflorescences and young berry clusteres by Botrytis cinerea. Phytopathology, 105, 325–333.Cullen, D. W., Lees, A. K., Toth, I. K., & Duncan, J. M. (2001). Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology, 107, 387–398.Daniëls, B., De Landtsheer, A., Dreesen, R., Davey, M. W., & Keulemans, J. (2012). Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves. European Journal of Plant Pathology, 134, 821–833.Demaree, J. (1924). Pecan scab with special reference to sources of the early spring infections. Journal of Agriculture Research, 28, 321–330.Ghasemkhani, M., Holefors, A., Marttila, S., Dalman, K., Zborowska, A., Rur, M., Rees-George, J., Nybom, H., Everett, K. R., Scheper, R. W. A., & Garkava-Gustavsson, L. (2016). Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees. Trees, 30, 1111–1125.Gisbert, A. D., Besoain, X., Llácer, G., & Badenes, M. L. (2006). Protección de cultivo II, Enfermedades. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El Cultivo del Níspero Japonés (pp. 227–246). Valencia: Gráficas Alcoy.Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47, 511–521.González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.González-Domínguez, E., Armengol, J., & Rossi, V. (2014a). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS One, 9, e107547.González-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014b). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139, 849–861.González-Domínguez, E., León, M., Armengol, J., & Berbegal, M. (2015). A nested polymerase chain reaction protocol for in planta detection of Fusicladium eriobotryae, causal agent of loquat scab. Journal of Phytopathology, 163, 415–418.González-Domínguez, E., Armengol, J., & Rossi, V. (2017). Biology and epidemiology of Venturia species affecting fruit crops: A review. Frontiers in Plant Science, 8, 1496.Graniti, A. (1993). Olive scab: A review. EPPO Bulletin, 23, 377–384.Gusberti, M., Patocchi, A., Gessler, C., & Broggini, G. A. L. (2012). Quantification of Venturia inaequalis growth in Malus × domestica with quantitative real-time polymerase chain reaction. Plant Disease, 96, 1791–1797.Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Lalancette, N., McFarland, K., & Burnett, L. (2012). Modelling sporulation of Fusicladium carpophilum on nectarine twig lesions: Relative humidity and temperature effects. Phytopathology, 102, 421–428.Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.Martínez-Calvo, B. J., Badenes, M. L., Llacer, G., Bleiholder, H., Hack, H., & Meier, U. (1999). Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb) Lindl.). Annals of Applied Biology, 134, 353–357.Pilotti, M., Lumia, V., Di Lernia, G., & Brunetti, A. (2012). Development of real-time PCR for in wood-detection of Ceratocystis platani, the agent of canker stain of Platanus spp. European Journal of Plant Pathology, 134, 61–79.Prota, U. (1960). Ricerche sulla «ticchiolatura del Nespolo del Giappone e sul suo agente (Fusicladium eriobotryae Cav.). I. Observazioni sull’epidemiologia della malattia e sui caratteri morfo-biologici del parassita in Sardegna. Studi di Sassari, 8, 175–196.Ptskialadze, L. (1968). The causal agent of loquat scab and its biological characteristics. Review of Applied Mycology, 47, 268.Raabe, R., & Gardner, M. W. (1972). Scab of pyracantha, loquat, Toyon and Kageneckia. Phytopathology, 62, 914–916.Rodríguez, A. (1983). El cultivo del níspero en el valle del Algar-Guadalest. Sociedad Cooperativa de Crédito de. Alicante: Callosa d’En Sarrià.Salerno, M., Somma, V., & Rosciglione, B. (1971). Ricerche sull’epidemiologia della ticchiolatura del nespolo del giappone. Technology Agriculture, 23, 947–956.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007a). Fusicladium eriobotryae: hongo causante del moteado del níspero en el Mediterráneo español. Boletín de Sanidad Vegetal. Plagas, 33, 89–98.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007b). Identification and characterization of Fusicladium eriobotryae: Fungal pathogen causing mediterranean loquat scab. Acta Horticulturae, 750, 343–347.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Schena, L., Li Destri Nicosia, M. G., Sanzani, S. M., Faedda, R., Ippolito, A., & Cacciola, S. O. (2013). Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95, 7–24.Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production potential of Fusicladium carpophilum on twig lesions in south eastern peach orchards. Plant Disease, 92, 47–50.Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – Occurrence, properties and removal. Journal of Applied Microbiology, 113, 1014–1026.Schubert, K. S., Ritschel, A. R., & Braun, U. B. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132.Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: Production and marketing. Acta Horticulturae, 750, 45–47.van Leeuwen, G. C. M., Holb, I. J., & Jeger, M. J. (2002). Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathology, 51, 787–793.Villarino, M., Melgarejo, P., Usall, J., Segarra, J., & De Cal, A. (2010). Primary inoculum sources of Monilinia spp. in Spanish peach orchards and their relative importance in brown rot. Plant Disease, 94, 1048–1054.Viruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleagina in olive groves of southern Spain: Survival, inoculum production, and dispersal. Plant Disease, 97, 1549–1556

    Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens

    Full text link
    This is the peer reviewed version of the following article: Berbegal, M., Ramón¿Albalat, A., León, M. and Armengol, J. (2020), Evaluation of long¿term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest. Manag. Sci., 76: 967-977, which has been published in final form at https://doi.org/10.1002/ps.5605. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] BACKGROUND Fungal grapevine trunk diseases (GTDs) represent a threat to viticulture, being responsible for important economic losses worldwide. Nursery and vineyard experiments were set up to evaluate the ability of Trichoderma atroviride SC1 to reduce infections of GTD pathogens in grapevine planting material during the propagation process and to assess the long-term protection provided by this biocontrol agent on grapevine plants in young vineyards during two growing seasons. RESULTS Reductions of some GTD pathogen incidence and severity were found on grapevine propagation material after nursery application of T. atroviride SC1 during the grafting process, and also after additional T. atroviride SC1 treatments performed during two growing seasons in young vineyards, when compared with untreated plants. CONCLUSION Trichoderma atroviride SC1 showed promise to reduce infections caused by some GTD pathogens in nurseries, and also when establishing new vineyards. This biological control agent could possibly be a valuable component in an integrated management approach where various strategies are combined to reduce GTD infections.Berbegal Martinez, M.; Ramón-Albalat, A.; León Santana, M.; Armengol Fortí, J. (2020). Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science. 76(3):967-977. https://doi.org/10.1002/ps.5605S967977763Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-feMondello, V., Songy, A., Battiston, E., Pinto, C., Coppin, C., Trotel-Aziz, P., … Fontaine, F. (2018). Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Disease, 102(7), 1189-1217. doi:10.1094/pdis-08-17-1181-feGramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025Kaplan, J., Travadon, R., Cooper, M., Hillis, V., Lubell, M., & Baumgartner, K. (2016). Identifying economic hurdles to early adoption of preventative practices: The case of trunk diseases in California winegrape vineyards. Wine Economics and Policy, 5(2), 127-141. doi:10.1016/j.wep.2016.11.001Úrbez-Torres, J. R., & Gubler, W. D. (2010). Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology, 60(2), 261-270. doi:10.1111/j.1365-3059.2010.02381.xEskalen, A., Feliciano, A. J., & Gubler, W. D. (2007). Susceptibility of Grapevine Pruning Wounds and Symptom Development in Response to Infection by Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Plant Disease, 91(9), 1100-1104. doi:10.1094/pdis-91-9-1100Elena, G., & Luque, J. (2016). Seasonal Susceptibility of Grapevine Pruning Wounds and Cane Colonization in Catalonia, Spain Following Artificial Infection with Diplodia seriata and Phaeomoniella chlamydospora. Plant Disease, 100(8), 1651-1659. doi:10.1094/pdis-10-15-1186-reDíaz, G. A., & Latorre, B. A. (2013). Efficacy of paste and liquid fungicide formulations to protect pruning wounds against pathogens associated with grapevine trunk diseases in Chile. Crop Protection, 46, 106-112. doi:10.1016/j.cropro.2013.01.001Harman, G. E., & Kubicek, C. P. (Eds.). (1998). Trichoderma And Gliocladium, Volume 2. doi:10.1201/9781482267945Harman, G. E. (2000). Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377-393. doi:10.1094/pdis.2000.84.4.377Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology, 52(4), 522-529. doi:10.1007/s12088-012-0308-5Rajesh, R. W., Rahul, M. S., & Ambalal, N. S. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952-1965. doi:10.5897/ajar2015.10584Harman, G. E. (2006). Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology®, 96(2), 190-194. doi:10.1094/phyto-96-0190Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 52(1), 347-375. doi:10.1146/annurev-phyto-082712-102340Van Wees, S. C., Van der Ent, S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443-448. doi:10.1016/j.pbi.2008.05.005Berlanas, C., Andrés-Sodupe, M., López-Manzanares, B., Maldonado-González, M. M., & Gramaje, D. (2018). Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine. Pest Management Science, 74(12), 2864-2873. doi:10.1002/ps.5078Fourie, P. H., & Halleen, F. (2006). Chemical and biological protection of grapevine propagation material from trunk disease pathogens. European Journal of Plant Pathology, 116(4), 255-265. doi:10.1007/s10658-006-9057-9Dissanayake, A. (2016). Botryosphaeriaceae: Current status of genera and species. Mycosphere, 7(7), 1001-1073. doi:10.5943/mycosphere/si/1b/13Mostert, L., Groenewald, J. Z., Summerbell, R. C., Gams, W., & Crous, P. W. (2006). Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs. Studies in Mycology, 54, 1-113. doi:10.3114/sim.54.1.1GARDES, M., & BRUNS, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. doi:10.1111/j.1365-294x.1993.tb00005.xTravadon, R., Lawrence, D. P., Rooney-Latham, S., Gubler, W. D., Wilcox, W. F., Rolshausen, P. E., & Baumgartner, K. (2015). Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology, 119(1), 53-66. doi:10.1016/j.funbio.2014.11.002O’Donnell, K., & Cigelnik, E. (1997). Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the FungusFusariumAre Nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103-116. doi:10.1006/mpev.1996.0376Jacobs, K., Bergdahl, D. R., Wingfield, M. J., Halik, S., Seifert, K. A., Bright, D. E., & Wingfield, B. D. (2004). Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108(4), 411-418. doi:10.1017/s0953756204009748Savazzini, F., Longa, C. M. O., Pertot, I., & Gessler, C. (2008). Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. Journal of Microbiological Methods, 73(2), 185-194. doi:10.1016/j.mimet.2008.02.004Longa, C. M. O., Pertot, I., & Tosi, S. (2008). Ecophysiological requirements and survival of aTrichoderma atrovirideisolate with biocontrol potential. Journal of Basic Microbiology, 48(4), 269-277. doi:10.1002/jobm.200700396Úrbez-Torres, J. R., Haag, P., Bowen, P., Lowery, T., & O’Gorman, D. T. (2015). Development of a DNA Macroarray for the Detection and Identification of Fungal Pathogens Causing Decline of Young Grapevines. Phytopathology®, 105(10), 1373-1388. doi:10.1094/phyto-03-15-0069-

    A qPCR-based method for the detection and quantification of the peach powdery mildew (Podosphaera pannosa) in epidemiological studies

    Get PDF
    [EN] A qPCR-based method was developed to detect and quantifyPodosphaera pannosa, the main causal agent of peach powdery mildew. A primer pair was designed to target part of the ITS region of the fungal ribosomal DNA, which proved to be highly specific and sensitive. A minimum of 2.81 pg mu L(- 1)ofP. pannosaDNA and 6 conidia mL(- 1)in artificially-prepared conidia suspensions were found to be the limit of detection. Moreover, a quantification of conidia placed on plastic tapes commonly used in volumetric air samplers was performed. Regression equations on conidia quantification obtained either from aqueous conidia suspensions or conidia placed on plastic tapes were similar. The protocol was further validated in field conditions by estimating the number ofP. pannosaconidia obtained with an air sampler, by both microscopic and molecular quantification. Both techniques detected the peaks of conidia production during a 4-month sampling period, and a significant correlation (r = 0.772) was observed between both quantification methods. Additionally, the molecular method was applied to detect latent fungal inoculum in different plant parts of peach trees. The pathogen was detected mainly on the bark of affected twigs, and to a lesser extent, in foliar buds. The method developed here can be applied in the study ofP. pannosaepidemiology and can help in improving the management of this pathogen through its early detection and quantification.This research was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain, project RTA2013-00004-C03-01, and with matching funds from the European Regional Development Fund (ERDF). Jordi Luque was supported by the CERCA Programme, Generalitat de Catalunya. Neus Marimon was supported by INIA with a predoctoral grant (CPD-2015-0142). The authors thank Dr Josep Girbal (Univ. Autònoma de Barcelona, Bellaterra, Spain) for kindly providing us with herbarium vouchers of different powdery mildew species.Marimón, N.; Eduardo, I.; León Santana, M.; Berbegal Martinez, M.; Armengol Fortí, J.; Luque, J. (2020). A qPCR-based method for the detection and quantification of the peach powdery mildew (Podosphaera pannosa) in epidemiological studies. European Journal of Plant Pathology. 158(4):1005-1016. https://doi.org/10.1007/s10658-020-02136-0S100510161584Amano, K. (1986). Host range and geographical distribution of the powdery mildew fungi (p. 741). Tokyo: Japan Scientific Societies Press.Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 2(suppl. 1), 49–52.Braun, U. (1987). A monograph of the Erysiphales (powdery mildews). Nova Hedwigia, 89, 1-700. Stuttgart: J. Cramer.Braun, U., Cook, R. T. A., Inman, A. J., & Shin, H. D. (2002). The taxonomy of powdery mildew fungi. In R. R. Bélanger, W. R. Bushnell, A. J. Dik, & T. L. W. Carver (Eds.), The Powdery Mildews, A Comprenhensive Treatise (pp. 13–55). St. Paul: APS Press.Butt, D. J. (1978). Epidemiology of powdery mildews. In D. M. Spencer (Ed.), The Powdery Mildews (pp. 51–81). New York: Academic.Cao, X., Yao, D., Xu, X., Zhou, Y., Ding, K., Duan, X., Fan, J., & Luo, Y. (2015). Development of weather- and airborne inoculum-based models to describe disease severity of wheat powdery mildew. Plant Disease, 99, 395–400.Cunnington, J. H., Lawrie, A. C., & Pascoe, I. G. (2005). Genetic variation within Podosphaera tridactyla reveals a paraphyletic species complex with biological specialization towards specific Prunus subgenera. Mycological Research, 119, 357–362.Donoso, J. M., Picañol, R., Serra, O., Howad, W., Alegre, S., Arús, P., & Eduardo, I. (2016). Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond x peach populations. Molecular Breeding, 36, 1–17.Dung, J. K. S., Scott, J. C., & Cheng, Q. (2018). Detection and quantification of airborne Claviceps purpurea sensu lato ascospores from Hirst-type spore traps using Real-Time Quantitative PCR. Plant Disease, 102, 2487–2493.Falacy, J. S., Grove, G. G., Mahaffee, W. F., Galloway, H., Glawe, D. A., Larsen, R. C., & Vandemark, G. J. (2007). Detection of Erysiphe necator in air samples using the polymerase chain reaction and species-specific primers. Phytopathology, 97, 1290–1297.Farr, D. F., & Rossman, A. Y. (2019). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrieved February 25, 2019, from https://nt.ars-grin.gov/fungaldatabases/.Galán, C., Cariñanos, P., Alcázar, P., & Dominguez, E. (2007). Management and Quality Manual. Spanish Aerobiology Network (REA). Córdoba: Servicio de Publicaciones de la Universidad de Córdoba.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Grove, G. G. (1991). Powdery mildew of sweet cherry: Influence of temperature and wetness duration on release and germination of ascospores of Podosphaera clandestina. Phytopathology, 81, 1271–1275.Grove, G. G. (1995). Powdery mildew. In J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu, & J. K. Uyemoto (Eds.), Compendium of Stone Fruit Diseases (pp. 12–14). St. Paul: APS Press.Hollomon, D. W., & Wheeler, I. E. (2002). Controlling powdery mildews with chemistry. In R. R. Bélanger, W. R. Bushnell, A. J. Dik, & T. L. W. Carver (Eds.), The Powdery Mildews, A Comprehensive Treatise (pp. 249–255). Saint Paul: APS Press.Horst, R. K., & Cloyd, R. A. (2007). Powdery mildews. In R. K. Horst & R. A. Cloyd (Eds.), Compendium of Rose Diseases and Pests (pp. 5–8). Saint Paul: APS Press.Ito, M., & Takamatsu, S. (2010). Molecular phylogeny and evolution of subsection Magnicellulatae (Erysiphaceae: Podosphaera) with special reference to host plants. Mycoscience, 51, 34–43.Jarvis, W. R., Gubler, W. D., & Grove, G. G. (2002). Epidemiology of powdery mildews in agricultural pathosystems. In R. R. Bélanger, W. R. Bushnell, A. J. Dik, & T. L. W. Carver (Eds.), The Powdery Mildews, A Comprehensive Treatise (pp. 169–199). Saint Paul: APS Press.Kunjeti, S. G., Anchieta, A., Martin, F. N., Choi, Y.-J., Thines, M., Michelmore, R. W., … Klosterman, S. J. (2016). Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology, 106, 1426–1437.Leus, L., Dewitte, A., Van Huylenbroeck, J., Vanhoutte, N., Van Bockstaele, E., & Hofte, M. (2006). Podosphaera pannosa (syn. Sphaerotheca pannosa) on Rosa and Prunus spp.: characterization of pathotypes by differential plant reactions and ITS sequences. Journal of Phytopathology, 154, 23–28.Longrée, K. (1939). The Effect of Temperature and Relative Humidity on Powdery Mildew of Roses. New York: Agricultural Experiment Station Ithaca.Luque, J., Martos, S., & Phillips, A. J. L. (2005). Botryosphaeria viticola sp. nov. on grapevines: a new species with a Dothiorella anamorph. Mycologia, 97, 1111–1121.Mahaffee, W. F., & Stoll, R. (2016). The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions. Phytopathology, 106, 420–431.MAPA (2002). Real Decreto 1201/2002, de 20 de noviembre, por el que se regula la producción integrada de productos agrícolas. https://www.boe.es/boe/dias/2002/11/30/pdfs/A42028-42040.pdf. Accessed 11 Dec 2020.Marimon, N., Eduardo, I., Martínez-Minaya, J., Vicent, A., & Luque, J. (2020). A decision support system based on degree-days to initiate fungicide spray programs for peach powdery mildew in Catalonia, Spain. Plant Disease. https://doi.org/10.1094/PDIS-10-19-2130-RE.Michailides, T. J., Morgan, D. P., Ma, Z., Luo, Y., Felts, D., Doster, M. A., & Reyes, H. (2005). Conventional and molecular assays aid diagnosis of crop diseases and fungicide resistance. California Agriculture, 59, 115–123.Ogawa, J. M., & English, H. (1991). Diseases of temperate zone tree fruit and nut crops (3345, pp. 461). Oakland: University of California, Division of Agriculture and Natural Resources.R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna . https://www.R-project.org/.Reuveni, M. (2001). Improved control of powdery mildew (Sphaerotheca pannosa) of nectarines in Israel using strobilurin and polyoxin B fungicides; mixtures with sulfur; and early bloom applications. Crop Protection, 20, 663–668.Sholberg, P., O’Gorman, D., Bedford, K., & Lévesque, C. A. (2005). Development of a DNA microarray for detection and monitoring of economically important apple diseases. Plant Disease, 89, 1143–1150.Takamatsu, S., Niinomi, S., Harada, M., & Havrylenko, M. (2010). Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts. Persoonia, 24, 38–48.Thiessen, L. D., Keune, J. A., Neill, T. M., Turecheck, W. W., Grove, G. G., & Mahaffee, W. F. (2016). Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. Plant Pathology, 65, 238–249.Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.Toma, S., Ivascu, A., & Oprea, M. (1998). Highlights of epidemiology of the fungus Sphaerotheca pannosa (Wallr.) Lev. var. persicae Woron in the southern zone of Romania. Acta Horticulturae, 465, 709–714.Weinhold, A. R. (1961). The orchard development of peach powdery mildew. Phytopathology, 51, 478–481.White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). Burlington: Academic.Yarwood, C. E. (1957). Powdery mildews. The Botanical Review, 23, 235–301.Zúñiga, E., León, M., Berbegal, M., Armengol, J., & Luque, J. (2018). A q-PCR-based method for detection and quantification of Polystigma amygdalinum, the cause of red leaf blotch of almond. Phytopathologia Mediterranea, 57, 257–268

    Nutritional intra-amniotic therapy increases survival in a rabbit model of fetal growth restriction

    Get PDF
    Objective To evaluate the perinatal effects of a prenatal therapy based on intra-amniotic nutritional supplementation in a rabbit model of intrauterine growth restriction (IUGR). Methods IUGR was surgically induced in pregnant rabbits at gestational day 25 by ligating 40-50% of uteroplacental vessels of each gestational sac. At the same time, modified-parenteral nutrition solution (containing glucose, amino acids and electrolytes) was injected into the amniotic sac of nearly half of the IUGR fetuses (IUGR-T group n = 106), whereas sham injections were performed in the rest of fetuses (IUGR group n = 118). A control group without IUGR induction but sham injection was also included (n = 115). Five days after the ligation procedure, a cesarean section was performed to evaluate fetal cardiac function, survival and birth weight. Results Survival was significantly improved in the IUGR fetuses that were treated with intra-amniotic nutritional supplementation as compared to non-treated IUGR animals (survival rate: controls 71% vs. IUGR 44% p = 0.003 and IUGR-T 63% vs. IUGR 44% p = 0.02), whereas, birth weight (controls mean 43g ± SD 9 vs. IUGR 36g ± SD 9 vs. IUGR-T 35g ± SD 8, p = 0.001) and fetal cardiac function were similar among the IUGR groups. Conclusion Intra-amniotic injection of a modified-parenteral nutrient solution appears to be a promising therapy for reducing mortality among IUGR. These results provide an opportunity to develop new intra-amniotic nutritional strategies to reach the fetus by bypassing the placental insufficienc

    Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov

    Get PDF
    [EN] Loquat (Eriobotrya japonica) is a fruit tree cultivated in several countries in the Mediterranean region. A survey of a loquat orchard in Sicily ( Italy) revealed the presence of plants showing dieback symptoms and cankers with wedge-shaped necrotic sectors. Fungi from the genera Diplodia and Neofusicoccum were isolated from symptomatic plants. On the basis of morphological characters and DNA sequence data four species were identified, Neofusicoccum parvum, N. vitifusiforme, Diplodia seriata and a novel Diplodia species, which is here described as D. rosacearum sp. nov. Inoculation trials of loquat plants cv Sanfilipparo showed that N. parvum, D. seriata and D. rosacearum were pathogenic to this host. Although variability was observed between isolates, N. parvum and D. rosacearum were the most aggressive species.This research was supported by Servizio VII Fitosanitario Forestale del Dipartimento Regionale, Azienda Regionale Foreste Demaniali. Artur Alves acknowledges financing by European Funds through COMPETE and by National Funds through the Portuguese Foundation for Science and Technology (FCT) to the research unit CESAM (UID/AMB/50017/2013 - POCI-01-0145-FEDER-007638) and himself (FCT Investigator Programme - IF/00835/2013), and support by the Contributi avvio e sviluppo collaborazioni internazionali (CORI-2014), Visiting Professor Programme at the University of Palermo, Italy. The authors thank Dr. Giuseppe Lo Giudice for allowing carrying out the surveys in his loquat field.Giambra, S.; Piazza, G.; Alves, A.; Mondello, V.; Berbegal Martinez, M.; Armengol Fortí, J.; Burruano, S. (2016). Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov. Mycosphere (Online). 7(7):978-989. https://doi.org/10.5943/mycosphere/si/1b/9S9789897

    Relationship Between the Xylem Anatomy of Grapevine Rootstocks and Their Susceptibility to Phaeoacremonium minimum and Phaeomoniella chlamydospora

    Full text link
    [EN] Fungal grapevine trunk diseases (GTDs) are some of the most pressing threats to grape production worldwide. While these diseases are associated with several fungal pathogens, Phaeomoniella chlamydospora and Phaeoacremonium minimum are important contributors to esca and Petri diseases. Recent research has linked grapevine xylem diameter with tolerance to Pa. chlamydospora in commercial rootstocks. In this study, we screen over 25 rootstocks for xylem characteristics and tolerance to both Pa. chlamydospora and Pm. minimum. Tolerance was measured by fungal incidence and DNA concentration (quantified via qPCR), while histological analyses were used to measure xylem characteristics, including xylem vessels diameter, density, and the proportion of the stem surface area covered by xylem vessels. Rootstocks were grouped into different classes based on xylem characteristics to assess the potential association between vasculature traits and pathogen tolerance. Our results revealed significant differences in all the analyzed xylem traits, and also in DNA concentration for both pathogens among the tested rootstocks. They corroborate the link between xylem vessels diameter and tolerance to Pa. chlamydospora. In Pm. minimum, the rootstocks with the widest xylem diameter proved the most susceptible. This relationship between vasculature development and pathogen tolerance has the potential to inform both cultivar choice and future rootstock breeding to reduce the detrimental impact of GTDs worldwide.Funding This research was founded by FEDER funding through a State Program of I + D + i oriented to the Challenges of Society (RTA2015-00015-C02-00), supported by The National Institute for Agricultural and Food Research and Technology (INIA). DG was supported by the Ramon y Cajal program, Spanish Government (RyC-2017-23098). This research has been developed as a result of a mobility stay funded by the Erasmus+ KA1 Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project.Ramsing, CK.; Gramaje, D.; Mocholí, S.; Agusti, J.; Cabello Sáenz De Santa María, F.; Armengol Fortí, J.; Berbegal Martinez, M. (2021). Relationship Between the Xylem Anatomy of Grapevine Rootstocks and Their Susceptibility to Phaeoacremonium minimum and Phaeomoniella chlamydospora. Frontiers in Plant Science. 12:1-13. https://doi.org/10.3389/fpls.2021.726461S1131
    • …
    corecore