16 research outputs found

    The Mitogen-Induced Increase in T Cell Size Involves PKC and NFAT Activation of Rel/NF-κB-Dependent c-myc Expression

    Get PDF
    AbstractCell growth during the G1 stage of the cell cycle is partly controlled by inducing c-myc expression, which in B cells is regulated by the NF-κB1 and c-Rel transcription factors. Here, we show that c-myc-dependent growth during T cell activation requires c-Rel and RelA and that blocking this growth by inhibiting protein kinase C theta (PKCθ) coincides with a failure to upregulate c-myc due to impaired RelA nuclear import and inhibition of NFAT-dependent c-rel transcription. These results demonstrate that different Rel/NF-κB dimers regulate the mitogenic growth of mature T and B cells, with a signaling pathway incorporating PKCθ and NFAT controlling c-Rel/RelA-induced c-myc expression in activated T cells

    The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization

    Get PDF
    Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling

    The Mitogen-Induced Increase in T Cell Size Involves PKC and NFAT Activation of Rel/NF-kB-Dependent c-myc Expression

    No full text
    Cell growth during the G1 stage of the cell cycle is partly controlled by inducing c-myc expression, which in B cells is regulated by the NF-κB1 and c-Rel transcription factors. Here, we show that c-myc-dependent growth during T cell activation require

    Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma

    Full text link
    Thymosin beta 4 is a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes. Thymosin beta 4 gene silencing promotes differentiation of neural stem cells whereas thymosin beta 4 overexpression initiates cortical folding of developing brain hemispheres. A role of thymosin beta 4 in malignant gliomas has not yet been investigated. We analysed thymosin beta 4 staining on tissue microarrays and performed interrogations of the REMBRANDT and the Cancer Genome Atlas databases. We investigated thymosin beta 4 expression in seven established glioma cell lines and seven glioma-initiating cell lines and induced or silenced thymosin beta 4 expression by lentiviral transduction in LNT-229, U87MG and GS-2 cells to study the effects of altered thymosin beta 4 expression on gene expression, growth, clonogenicity, migration, invasion, self-renewal and differentiation capacity in vitro, and tumorigenicity in vivo. Thymosin beta 4 expression increased with grade of malignancy in gliomas. Thymosin beta 4 gene silencing in LNT-229 and U87MG glioma cells inhibited migration and invasion, promoted starvation-induced cell death in vitro and enhanced survival of glioma-bearing mice. Thymosin beta 4 gene silencing in GS-2 cells inhibited self-renewal and promoted differentiation in vitro and decreased tumorigenicity in vivo. Gene expression analysis suggested a thymosin beta 4-dependent regulation of mesenchymal signature genes and modulation of TGFβ and p53 signalling networks. We conclude that thymosin beta 4 should be explored as a novel molecular target for anti-glioma therapy

    Plk1 Self-Organization and Priming Phosphorylation of HsCYK-4 at the Spindle Midzone Regulate the Onset of Division in Human Cells

    Get PDF
    Animal cells initiate cytokinesis in parallel with anaphase onset, when an actomyosin ring assembles and constricts through localized activation of the small GTPase RhoA, giving rise to a cleavage furrow. Furrow formation relies on positional cues provided by anaphase spindle microtubules (MTs), but how such cues are generated remains unclear. Using chemical genetics to achieve both temporal and spatial control, we show that the self-organized delivery of Polo-like kinase 1 (Plk1) to the midzone and its local phosphorylation of a MT-bound substrate are critical for generating this furrow-inducing signal. When Plk1 was active but unable to target itself to this equatorial landmark, both cortical RhoA recruitment and furrow induction failed to occur, thus recapitulating the effects of anaphase-specific Plk1 inhibition. Using tandem mass spectrometry and phosphospecific antibodies, we found that Plk1 binds and directly phosphorylates the HsCYK-4 subunit of centralspindlin (also known as MgcRacGAP) at the midzone. At serine 157, this modification creates a major docking site for the tandem BRCT repeats of the Rho GTP exchange factor Ect2. Cells expressing only a nonphosphorylatable form of HsCYK-4 failed to localize Ect2 at the midzone and were severely impaired in cleavage furrow formation, implying that HsCYK-4 is Plk1's rate-limiting target upstream of RhoA. Conversely, tethering an inhibitor-resistant allele of Plk1 to HsCYK-4 allowed furrows to form despite global inhibition of all other Plk1 molecules in the cell. Our findings illuminate two key mechanisms governing the initiation of cytokinesis in human cells and illustrate the power of chemical genetics to probe such regulation both in time and space
    corecore