97 research outputs found
Shapes of the Pb ground states from beta decay studies using the total absorption technique
The beta decay of Pb has been studied using the total absorption
technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from
the measurements, combined with QRPA theoretical calculations, allow us to
infer that the ground states of the Pb isotopes are spherical.
These results represent the first application of the shape determination method
using the total absorption technique for heavy nuclei and in a region where
there is considerable interest in nuclear shapes and shape effects
Early onset of ground-state deformation in the neutron-deficient polonium isotopes
In-source resonant ionization laser spectroscopy of the even- polonium
isotopes Po has been performed using the
to ( nm) transition in the polonium atom
(Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope
shifts in Po with a previous data set allows to test for the first
time recent large-scale atomic calculations that are essential to extract the
changes in the mean-square charge radius of the atomic nucleus. When going to
lighter masses, a surprisingly large and early departure from sphericity is
observed, which is only partly reproduced by Beyond Mean Field calculations.Comment: As submitted to PR
Changes in mean-squared charge radii and magnetic moments of Tl 179-184 measured by in-source laser spectroscopy
Hyperfine structure and isotope shifts have been measured for the ground and isomeric states in the neutron-deficient isotopes Tl179-184 using the 276.9-nm transition. The experiment has been performed at the CERN-Isotope Separator On-Line facility using the in-source resonance-ionization laser spectroscopy technique. Spins for the ground states in Tl179,181,183 have been determined as I=1/2. Magnetic moments and changes in the nuclear mean-square charge radii have been deduced. By applying the additivity relation for magnetic moments of the odd-odd Tl nuclei the leading configuration assignments were confirmed. A deviation of magnetic moments for isomeric states in Tl182,184 from the trend of the heavier Tl nuclei is observed. The charge radii of the ground states of the isotopes Tl179-184 follow the trend for isotonic (spherical) lead nuclei. The noticeable difference in charge radii for ground and isomeric states of Tl183,184 has been observed, suggesting a larger deformation for the intruder-based 9/2- and 10- states compared to the ground states. An unexpected growth of the isomer shift for Tl183 has been found
-delayed fission of isomers in
status: publishe
Charge radii and electromagnetic moments of 195-211At
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At197,199, for which a significant difference in the charge radii for ground (9/2-) and isomeric (1/2+) states has been observed
- …