23 research outputs found

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Memory-Based Sand Cat Swarm Optimization for Feature Selection in Medical Diagnosis

    No full text
    The rapid expansion of medical data poses numerous challenges for Machine Learning (ML) tasks due to their potential to include excessive noisy, irrelevant, and redundant features. As a result, it is critical to pick the most pertinent features for the classification task, which is referred to as Feature Selection (FS). Among the FS approaches, wrapper methods are designed to select the most appropriate subset of features. In this study, two intelligent wrapper FS approaches are implemented using a new meta-heuristic algorithm called Sand Cat Swarm Optimizer (SCSO). First, the binary version of SCSO, known as BSCSO, is constructed by utilizing the S-shaped transform function to effectively manage the binary nature in the FS domain. However, the BSCSO suffers from a poor search strategy because it has no internal memory to maintain the best location. Thus, it will converge very quickly to the local optimum. Therefore, the second proposed FS method is devoted to formulating an enhanced BSCSO called Binary Memory-based SCSO (BMSCSO). It has integrated a memory-based strategy into the position updating process of the SCSO to exploit and further preserve the best solutions. Twenty one benchmark disease datasets were used to implement and evaluate the two improved FS methods, BSCSO and BMSCSO. As per the results, BMSCSO acted better than BSCSO in terms of fitness values, accuracy, and number of selected features. Based on the obtained results, BMSCSO as a FS method can efficiently explore the feature domain for the optimal feature set

    Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC

    No full text
    In the current study, the performance of the npn solar cell (SC) microstructure is improved by inspecting some modifications to provide possible paths for fabrication techniques of the structure. The npn microstructure is simulated by applying a process simulator by starting with a heavily doped p-type substrate which could be based on low-cost Si wafers. After etching deep notches through the substrate and forming the emitter by n-type diffusion, an aluminum layer is deposited to form the emitter electrode with about 0.1 µm thickness; thereby, the notches are partially filled. This nearly-open-notches microstructure, using thin metal instead of filling the notch completely with Al, gives an efficiency of 15.3%, which is higher than the conventional structure by 0.8%. Moreover, as antireflection coating (ARC) techniques play a crucial role in decreasing the front surface reflectivity, we apply different ARC schemes to inspect their influence on the optical performance. The influence of utilizing single layer (ZnO), double (Si3N4/ZnO), and triple (SiO2/Si3N/ZnO) ARC systems is investigated, and the simulation results are compared. The improvement in the structure performance because of the inclusion of ARC is evaluated by the relative change in the efficiency (Δη). In the single, double, and triple ARC, Δη is found to be 12.5%, 15.4%, and 17%, respectively. All simulations are performed by using a full TCAD process and device simulators under AM1.5 illumination

    Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC

    No full text
    In the current study, the performance of the npn solar cell (SC) microstructure is improved by inspecting some modifications to provide possible paths for fabrication techniques of the structure. The npn microstructure is simulated by applying a process simulator by starting with a heavily doped p-type substrate which could be based on low-cost Si wafers. After etching deep notches through the substrate and forming the emitter by n-type diffusion, an aluminum layer is deposited to form the emitter electrode with about 0.1 µm thickness; thereby, the notches are partially filled. This nearly-open-notches microstructure, using thin metal instead of filling the notch completely with Al, gives an efficiency of 15.3%, which is higher than the conventional structure by 0.8%. Moreover, as antireflection coating (ARC) techniques play a crucial role in decreasing the front surface reflectivity, we apply different ARC schemes to inspect their influence on the optical performance. The influence of utilizing single layer (ZnO), double (Si3N4/ZnO), and triple (SiO2/Si3N/ZnO) ARC systems is investigated, and the simulation results are compared. The improvement in the structure performance because of the inclusion of ARC is evaluated by the relative change in the efficiency (Δη). In the single, double, and triple ARC, Δη is found to be 12.5%, 15.4%, and 17%, respectively. All simulations are performed by using a full TCAD process and device simulators under AM1.5 illumination

    Narrowband Near-Infrared Perovskite/Organic Photodetector: TCAD Numerical Simulation

    No full text
    Narrowband photodetectors (PD) established in the near-infrared (NIR) wavelength range are highly required in a variety of applications including high-quality bioimaging. In this simulation study, we propose a filter-less narrowband PD based on the architecture of perovskite/organic heterojunction. The most decisive part of the photodetector is the hierarchical configuration of a larger bandgap perovskite material with a thicker film followed by a lower bandgap organic material with a narrower layer. The design of the structure is carried out by TCAD numerical simulations. Our structure is based on an experimentally validated wideband organic PD, which is modified by invoking an additional perovskite layer having a tunable bandgap. The main detector device comprises of ITO/perovskite (CsyFA1−yPb(IxBr1−x)3)/organic blend (PBDTTT-c:C60-PCBM)/PEDOT:PSS/Al. The simulation results show that the proposed heterojunction PD achieves satisfactory performance when the thickness of perovskite and organic layers are 2.5 µm and 500 nm, respectively. The designed photodetector achieves a narrow spectral response at 730 nm with a full width at half-maximum (FWHM) of 33 nm in the detector, while having a responsivity of about 0.12 A/W at zero bias. The presented heterojunction perovskite/organic PD can efficiently detect light in the wavelength range of 700 to 900 nm. These simulation results can be employed to drive the development of filter-less narrowband NIR heterojunction PD

    Performance Investigation of a Proposed Flipped npn Microstructure Silicon Solar Cell Using TCAD Simulation

    No full text
    This work aims at inspecting the device operation and performance of a novel flipped npn microstructure solar cell based on low-cost heavily doped silicon wafers. The flipped structure was designed to eliminate the shadowing effect as applied in the conventional silicon-based interdigitated back-contact cell (IBC). Due to the disappearance of the shadowing impact, the optical performance and short-circuit current density of the structure have been improved. Accordingly, the cell power conversion efficiency (PCE) has been improved in comparison to the conventional npn solar cell microstructure. A detailed analysis of the flipped npn structure was carried out in which we performed TCAD simulations for the electrical and optical performance of the flipped cell. Additionally, a comparison between the presented flipped microstructure and the conventional npn solar cell was accomplished. The PCE of the conventional npn structure was found to be 14.5%, while it was about 15% for the flipped structure when using the same cell physical parameters. Furthermore, the surface recombination velocity and base bulk lifetime, which are the most important recombination parameters, were studied to investigate their influence on the flipped microstructure performance. An efficiency of up to 16% could be reached when some design parameters were properly fine-tuned. Moreover, the impact of the different physical models on the performance of the proposed cell was studied, and it was revealed that band gap narrowing effect was the most significant factor limiting the open-circuit voltage. All the simulations accomplished in this analysis were carried out using the SILVACO TCAD process and device simulators
    corecore