104 research outputs found

    Investigating the Potential Effects of Pollutants on the Rainbow Trout (Oncorhynchus mykiss) Gastrointestinal Microbiome

    Get PDF
    The gastrointestinal (GI) microbiome is an important aspect of organismal health with the ability to affect host nutrition, metabolic processes, and immune system development. Changes to the GI microbiome can affect any of these or other host functions and could result in negative effects on overall fish health. While it is known that low concentrations of pollutants can affect environmental microbes, little information is known about the effects of environmental contaminants on GI microbiota in fish. I conducted two studies to explore the potential effects of chemicals on the GI microbiome of fish. The pilot study aimed to develop a method to extract and analyse the microbiota within the GI tract of fish. It also compared the microbiomes of two phylogenetically distant fish species, lake sturgeon (Acipenser fulvescens) and rainbow trout (Oncorhynchus mykiss), under controlled conditions. The second study aimed to discover the effects of two common environmental contaminants, benzo(a)pyrene (BaP) and triclosan, on the GI microbiome in rainbow trout. In both experiments, DNA was extracted from intestinal contents of fish and GI microbiota were evaluated using next-generation sequencing techniques and downstream applications. The pilot study suggested GI microbial communities were more diverse in rainbow trout and were significantly different from those communities in lake sturgeon. Due to the similarities in rearing conditions and diet in the laboratory, microbial differences between the two species may indicate evolutionary differences. In the second study, the GI microbiomes of rainbow trout were compared after exposure to four different diets (solvent control, 5.09 mg/kg BaP, 40.7 mg/kg BaP and a mixture of 4.58 mg/kg BaP + 2.89 mg/kg triclosan) and sampled at each of three time points (exposure: one and 21 days; recovery: 28 days). Proteobacteria was dominant across all treatments and at all time points. Firmicutes, Tenericutes or Fusobacteria was the next most dominant phylum, depending on treatment and/or time. There were significant differences in both treatment and time. Composition was significantly different among treatment groups during each individual time, and time points differed for all treatments except the solvent control. Differences over time may be due to initial introduction of contaminants, followed by coping mechanisms, and recovery when exposure was removed. Together, these results suggest that fish species, chemical exposure, and duration of exposure all contribute to differences in the GI microbial composition of fish. Thus, the complexity of this system needs to be considered when identifying potential biomarkers of pollutant exposure in wild fish

    A universal equation to predict methane production of forage-fed cattle in Australia

    Get PDF
    The methods for estimating methane emissions from cattle as used in the Australian national inventory are based on older data that have now been superseded by a large amount of more recent data. Recent data suggested that the current inventory emissions estimates can be improved. To address this issue, a total of 1034 individual animal records of daily methane production (MP) was used to reassess the relationship between MP and each of dry matter intake (DMI) and gross energy intake (GEI). Data were restricted to trials conducted in the past 10 years using open-circuit respiration chambers, with cattle fed forage-based diets (forage >70%). Results from diets considered to inhibit methanogenesis were omitted from the dataset. Records were obtained from dairy cattle fed temperate forages (220 records), beef cattle fed temperate forages (680 records) and beef cattle fed tropical forages (133 records). Relationships were very similar for all three production categories and single relationships for MP on a DMI or GEI basis were proposed for national inventory purposes. These relationships were MP (g/day) = 20.7 (±0.28) × DMI (kg/day) (R2 = 0.92, P < 0.001) and MP (MJ/day) = 0.063 (±0.008) × GEI (MJ/day) (R2 = 0.93, P < 0.001). If the revised MP (g/day) approach is used to calculate Australia’s national inventory, it will reduce estimates of emissions of forage-fed cattle by 24%. Assuming a global warming potential of 25 for methane, this represents a 12.6 Mt CO2-e reduction in calculated annual emissions from Australian cattle

    The moral journey of learning a pedagogy: a qualitative exploration of student–teachers’ formal and informal writing of dialogic pedagogy

    Get PDF
    YesStudents of education encounter a range of pedagogies yet how future teachers’ appropriate moral principles are little understood. We conducted an investigation into this process with 10 international students of education attending an intensive course on ‘dialogic pedagogy’ in a university in Finland. The data comprising student learning journals and essays were coded for the level of questioning, acceptance and irreverence. In the findings, reverential acceptance was more frequent than questioning and irreverence; however, our qualitative analysis also found a large number of micro-transitions between questioning, acceptance and irreverence suggesting a dynamic interplay. Recognising this vacillation as part of a moral journey may support better understanding of what it means to engage with a different pedagogy

    Genotyping an Emiliania huxleyi (prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction

    Get PDF
    Due to the unprecedented rate at which our climate is changing, the ultimate consequence for many species is likely to be either extinction or migration to an alternate habitat. Certain species might, however, evolve at a rate that could make them resilient to the effects of a rapidly changing environment. This scenario is most likely to apply to species that have large population sizes and rapid generation times, such that the genetic variation required for adaptive evolution can be readily supplied. Emiliania huxleyi (Lohm.) Hay and Mohler (Prymnesiophyceae) is likely to be such a species, as it is the most conspicuous extant calcareous phytoplankton species in our oceans with growth rates of 1 day−1. Here we report on a validated set of microsatellites, in conjunction with the coccolithophore morphology motif genetic marker, to genotype 93 clonal isolates collected from across the world. Of these, 52 came from a single bloom event in the North Sea collected on the D366 United Kingdom Ocean Acidification cruise in June–July 2011. There were 26 multilocus genotypes (MLGs) encountered only once in the North Sea bloom and 8 MLGs encountered twice or up to six times. Each of these repeated MLGs exhibited Psex values of less than 0.05, indicating each repeated MLG was the product of asexual reproduction and not separate meiotic events. In addition, we show that the two most polymorphic microsatellite loci, EHMS37 and P01E05, are reporting on regions likely undergoing rapid genetic drift during asexual reproduction. Despite the small sample size, there were many more repeated genotypes than previously reported for other bloom-forming phytoplankton species, including a previously genotyped E. huxleyi bloom event. This study challenges the current assumption that sexual reproduction predominates during bloom events. Whilst genetic diversity is high amongst extant populations of E. huxleyi, the root cause for this diversity and ultimate fate of these populations still requires further examination. Nonetheless, we show that certain CMM genotypes are found everywhere, while others appear to have a regional bias

    Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules — the SPUtNIk study

    Get PDF
    Introduction:\textbf{Introduction:} Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrastenhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis:\textbf{Methods and analysis:} The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18^{18}FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18^{18}FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination:\textbf{Ethics and dissemination:} Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals.The trial is funded by the National Institute for Health Research HTA Programme (grant no: 09/22/117) and is being run by Southampton Clinical Trials Unit, directed by Professor Gareth Griffiths and part funded by Cancer Research UK. NRQ and RCR are part funded by the Cambridge Biomedical Research Centre and the Cancer Research Network: Eastern

    Prediction of enteric methane production, yield and intensity in dairy cattle using an intercontinental database

    Get PDF
    Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/d per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the US (US), Chile (CL), Australia (AU), and New Zealand (NZ). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6, 14.4, and 19.8% for intercontinental, EU, and US regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary NDF concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation
    • …
    corecore