4 research outputs found

    Calcium release at fertilization: Artificially mimicking the oocyte's response to sperm

    No full text
    The mechanism of sperm-induced calcium release has been the subject of many studies since the development in the late 1950s of in vitro culture systems that support mammalian fertilization. Despite efforts to elucidate the nature of the signal from the sperm that triggers both the early and late events of oocyte activation, the precise mechanism remains unresolved. Now, with the advent of somatic nuclear transfer technologies, the need to better understand this unique process has been recognised. Nuclear transfer embryos must be induced to commence development artificially because the activating signal from the sperm is absent. The primary activating stimulus is a large increase in the concentration of intracellular-free calcium and numerous physical and chemical treatments have been found to induce calcium changes that initiate the events of oocyte activation. Although live cloned offspring have been produced in a number of species, the overall efficiencies of the nuclear transfer procedures described thus far are unacceptably low and phenotypic anomalies are common. With the aim of improving these efficiencies, researchers are developing artificial activation treatments which induce oocyte responses that mimic those induced by fertilizing sperm. One strategy is to replicate the pattern of calcium change more closely. Another strategy is to couple an activating stimulus with treatments that inhibit maturation (or M-phase) promoting factor (MPF) activity, which regulates meiotic progression in oocytes. This paper reviews what is understood of calcium release at fertilization and describes the treatments that have been used to induce oocyte activation artificially in parthenogenetic and nuclear transfer studies. The relative effectiveness of the strategies employed to mimic the oocyte's response to sperm are discussed.Christopher G. Grupen, Mark B. Nottle and Hiroshi Nagashim

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore