155 research outputs found

    A New Extraction System for Extremely Low Level 14C in Meteorites.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木) 国立国語研究所 2階講

    The undatables : Quantifying uncertainty in a highly expanded Late Glacial-Holocene sediment sequence recovered from the deepest Baltic Sea basin-IODP Site M0063

    Get PDF
    Laminated, organic-rich silts and clays with high dissolved gas content characterize sediments at IODP Site M0063 in the Landsort Deep, which at 459 m is the deepest basin in the Baltic Sea. Cores recovered from Hole M0063A experienced significant expansion as gas was released during the recovery process, resulting in high sediment loss. Therefore, during operations at subsequent holes, penetration was reduced to 2 m per 3.3 m core, permitting expansion into 1.3 m of initially empty liner. Fully filled liners were recovered from Holes B through E, indicating that the length of recovered intervals exceeded the penetrated distance by a factor of > 1.5. A typical down-core logarithmic trend in gamma density profiles, with anomalously low-density values within the upper similar to 1 m of each core, suggests that expansion primarily occurred in this upper interval. Thus, we suggest that a simple linear correction is inappropriate. This interpretation is supported by anisotropy of magnetic susceptibility data that indicate vertical stretching in the upper similar to 1.5 m of expanded cores. Based on the mean gamma density profiles of cores from Holes M0063C and D, we obtain an expansion function that is used to adjust the depth of each core to conform to its known penetration. The variance in these profiles allows for quantification of uncertainty in the adjusted depth scale. Using a number of bulk C-14 dates, we explore how the presence of multiple carbon source pathways leads to poorly constrained radiocarbon reservoir age variability that significantly affects age and sedimentation rate calculations.Peer reviewe

    Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids

    Get PDF
    Charcoal forms a crucial source of archaeological and palaeoenvironmental data, providing a record of cultural activities, past climatic conditions and a means of chronological control via radiocarbon (<sup>14</sup>C) dating. Key to this is the perceived resistance of charcoal to post-depositional alteration, however recent research has highlighted the possibility for alteration and degradation of charcoal in the environment. An important aspect of such diagenesis is the potential for addition of exogenous 'humic acids' (HAs), to affect the accuracy of archaeological and palaeoenvironmental reconstructions based upon chemical analyses of HA-containing charcoal. However the release of significant quantities of HA from apparently pristine charcoals raises the question whether some HA could be derived via diagenetic alteration of charcoal itself. Here we address this question through comparison of freshly produced charcoal with samples from archaeological and geological sites exposed to environmental conditions for millennia using elemental (C/H/O) and isotopic (δ<sup>13</sup>C) measurements, Fourier Transform Infrared Spectroscopy (FTIR) and proton Liquid-State Nuclear Magnetic Resonance (<sup>1</sup>H NMR). The results of analyses show that the presence of highly carboxylated and aromatic alkali-extractable HA in charcoal from depositional environments can often be attributable to the effects of post-depositional processes, and that these substances can represent the products of post-depositional diagenetic alteration in charcoal

    Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins

    Get PDF
    We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation

    Autocrine Regulation of Pulmonary Inflammation by Effector T-Cell Derived IL-10 during Infection with Respiratory Syncytial Virus

    Get PDF
    Respiratory syncytial virus (RSV) infection is the leading viral cause of severe lower respiratory tract illness in young infants. Clinical studies have documented that certain polymorphisms in the gene encoding the regulatory cytokine IL-10 are associated with the development of severe bronchiolitis in RSV infected infants. Here, we examined the role of IL-10 in a murine model of primary RSV infection and found that high levels of IL-10 are produced in the respiratory tract by anti-viral effector T cells at the onset of the adaptive immune response. We demonstrated that the function of the effector T cell -derived IL-10 in vivo is to limit the excess pulmonary inflammation and thereby to maintain critical lung function. We further identify a novel mechanism by which effector T cell-derived IL-10 controls excess inflammation by feedback inhibition through engagement of the IL-10 receptor on the antiviral effector T cells. Our findings suggest a potentially critical role of effector T cell-derived IL-10 in controlling disease severity in clinical RSV infection

    Comparative Expression Profiling of the Chlamydia trachomatis pmp Gene Family for Clinical and Reference Strains

    Get PDF
    Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains.We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon.The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains

    IFN-γ-Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy

    Get PDF
    Chlamydial infection of the host cell induces Gamma interferon (IFNγ), a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNγ-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNγ-stimulated mouse embryonic fibroblasts (MEFs). We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNγ, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5−/− MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNγ-induced Atg5−/− cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6−/−) MEFs, in which chlamydial growth is enhanced, do not respond to IFNγ even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction

    Adhesion Molecules Associated with Female Genital Tract Infection

    Get PDF
    Altres ajuts: Marie Curie Career Integration Grant i una beca Fundació Dexeus Salut de la DonaEfforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes

    Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development

    Get PDF
    Background Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia infections, the molecular interactions between C. trachomatis and its host cell proteins remain elusive. Results In this study, we focused on the involvement of the host cell epidermal growth factor receptor (EGFR) in C. trachomatis attachment and development. A combination of molecular approaches, pharmacological agents and cell lines were used to demonstrate distinct functional requirements of EGFR in C. trachomatisinfection. We show that C. trachomatis increases the phosphorylation of EGFR and of its downstream effectors PLCγ1, Akt and STAT5. While both EGFR and platelet-derived growth factor receptor-β (PDGFRβ) are partially involved in bacterial attachment to the host cell surface, it is only the knockdown of EGFR and not PDGFRβ that affects the formation of C. trachomatis inclusions in the host cells. Inhibition of EGFR results in small immature inclusions, and prevents C. trachomatis-induced intracellular calcium mobilization and the assembly of the characteristic F-actin ring at the inclusion periphery. By using complementary approaches, we demonstrate that the coordinated regulation of both calcium mobilization and F-actin assembly by EGFR are necessary for maturation of chlamydial inclusion within the host cells. A particularly important finding of this study is the co-localization of EGFR with the F-actin at the periphery of C. trachomatis inclusion where it may function to nucleate the assembly of signaling protein complexes for cytoskeletal remodeling required for C. trachomatisdevelopment. Conclusion Cumulatively, the data reported here connect the function of EGFR to C. trachomatis attachment and development in the host cells, and this could lead to new venues for targeting C. trachomatis infections and associated diseases
    corecore