129 research outputs found

    Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons

    Get PDF
    We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must necessarily include an external power source, which we prove both from classical thermodynamics arguments and from a version of Landauer's memory erasure argument extended to nonequilibrium linear systems

    A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution

    Get PDF
    Tortricidae, one of the largest families of microlepidopterans, comprise about 10,000 described species worldwide, including important pests, biological control agents and experimental models. Understanding of tortricid phylogeny, the basis for a predictive classification, is currently provisional. We present the first detailed molecular estimate of relationships across the tribes and subfamilies of Tortricidae, assess its concordance with previous morphological evidence, and re-examine postulated evolutionary trends in host plant use and biogeography.We sequenced up to five nuclear genes (6,633 bp) in each of 52 tortricids spanning all three subfamilies and 19 of the 22 tribes, plus up to 14 additional genes, for a total of 14,826 bp, in 29 of those taxa plus all 14 outgroup taxa. Maximum likelihood analyses yield trees that, within Tortricidae, differ little among data sets and character treatments and are nearly always strongly supported at all levels of divergence. Support for several nodes was greatly increased by the additional 14 genes sequenced in just 29 of 52 tortricids, with no evidence of phylogenetic artifacts from deliberately incomplete gene sampling. There is strong support for the monophyly of Tortricinae and of Olethreutinae, and for grouping of these to the exclusion of Chlidanotinae. Relationships among tribes are robustly resolved in Tortricinae and mostly so in Olethreutinae. Feeding habit (internal versus external) is strongly conserved on the phylogeny. Within Tortricinae, a clade characterized by eggs being deposited in large clusters, in contrast to singly or in small batches, has markedly elevated incidence of polyphagous species. The five earliest-branching tortricid lineages are all species-poor tribes with mainly southern/tropical distributions, consistent with a hypothesized Gondwanan origin for the family.We present the first robustly supported phylogeny for Tortricidae, and a revised classification in which all of the sampled tribes are now monophyletic

    Gradient and Passive Circuit Structure in a Class of Non-linear Dynamics on a Graph

    Full text link
    We consider a class of non-linear dynamics on a graph that contains and generalizes various models from network systems and control and study convergence to uniform agreement states using gradient methods. In particular, under the assumption of detailed balance, we provide a method to formulate the governing ODE system in gradient descent form of sum-separable energy functions, which thus represent a class of Lyapunov functions; this class coincides with Csisz\'{a}r's information divergences. Our approach bases on a transformation of the original problem to a mass-preserving transport problem and it reflects a little-noticed general structure result for passive network synthesis obtained by B.D.O. Anderson and P.J. Moylan in 1975. The proposed gradient formulation extends known gradient results in dynamical systems obtained recently by M. Erbar and J. Maas in the context of porous medium equations. Furthermore, we exhibit a novel relationship between inhomogeneous Markov chains and passive non-linear circuits through gradient systems, and show that passivity of resistor elements is equivalent to strict convexity of sum-separable stored energy. Eventually, we discuss our results at the intersection of Markov chains and network systems under sinusoidal coupling

    Priors and Posteriors in Bayesian Timing of Divergence Analyses : The Age of Butterflies Revisited

    Get PDF
    The need for robust estimates of times of divergence is essential for downstream analyses, yet assessing this robustness is still rare. We generated a time-calibrated genus-level phylogeny of butterflies (Papilionoidea), including 994 taxa, up to 10 gene fragments and an unprecedented set of 12 fossils and 10 host-plant node calibration points. We compared marginal priors and posterior distributions to assess the relative importance of the former on the latter. This approach revealed a strong influence of the set of priors on the root age but for most calibrated nodes posterior distributions shifted from the marginal prior, indicating significant information in the molecular data set. Using a very conservative approach we estimated an origin of butterflies at 107.6 Ma, approximately equivalent to the latest Early Cretaceous, with a credibility interval ranging from 89.5 Ma (mid Late Cretaceous) to 129.5 Ma (mid Early Cretaceous). In addition, we tested the effects of changing fossil calibration priors, tree prior, different sets of calibrations and different sampling fractions but our estimate remained robust to these alternative assumptions. With 994 genera, this tree provides a comprehensive source of secondary calibrations for studies on butterflies.Peer reviewe

    Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 described species), deeper relationships are little understood within the clade Ditrysia, to which 98% of the species belong. To begin addressing this problem, we tested the ability of five protein-coding nuclear genes (6.7 kb total), and character subsets therein, to resolve relationships among 123 species representing 27 (of 33) superfamilies and 55 (of 100) families of Ditrysia under maximum likelihood analysis.</p> <p>Results</p> <p>Our trees show broad concordance with previous morphological hypotheses of ditrysian phylogeny, although most relationships among superfamilies are weakly supported. There are also notable surprises, such as a consistently closer relationship of Pyraloidea than of butterflies to most Macrolepidoptera. Monophyly is significantly rejected by one or more character sets for the putative clades Macrolepidoptera as currently defined (<it>P </it>< 0.05) and Macrolepidoptera excluding Noctuoidea and Bombycoidea sensu lato (<it>P </it>≤ 0.005), and nearly so for the superfamily Drepanoidea as currently defined (<it>P </it>< 0.08). Superfamilies are typically recovered or nearly so, but usually without strong support. Relationships within superfamilies and families, however, are often robustly resolved. We provide some of the first strong molecular evidence on deeper splits within Pyraloidea, Tortricoidea, Geometroidea, Noctuoidea and others.</p> <p>Separate analyses of mostly synonymous versus non-synonymous character sets revealed notable differences (though not strong conflict), including a marked influence of compositional heterogeneity on apparent signal in the third codon position (nt3). As available model partitioning methods cannot correct for this variation, we assessed overall phylogeny resolution through separate examination of trees from each character set. Exploration of "tree space" with GARLI, using grid computing, showed that hundreds of searches are typically needed to find the best-feasible phylogeny estimate for these data.</p> <p>Conclusion</p> <p>Our results (a) corroborate the broad outlines of the current working phylogenetic hypothesis for Ditrysia, (b) demonstrate that some prominent features of that hypothesis, including the position of the butterflies, need revision, and (c) resolve the majority of family and subfamily relationships within superfamilies as thus far sampled. Much further gene and taxon sampling will be needed, however, to strongly resolve individual deeper nodes.</p

    “A very orderly retreat”: Democratic transition in East Germany, 1989-90

    Get PDF
    East Germany's 1989-90 democratisation is among the best known of East European transitions, but does not lend itself to comparative analysis, due to the singular way in which political reform and democratic consolidation were subsumed by Germany's unification process. Yet aspects of East Germany's democratisation have proved amenable to comparative approaches. This article reviews the comparative literature that refers to East Germany, and finds a schism between those who designate East Germany's transition “regime collapse” and others who contend that it exemplifies “transition through extrication”. It inquires into the merits of each position and finds in favour of the latter. Drawing on primary and secondary literature, as well as archival and interview sources, it portrays a communist elite that was, to a large extent, prepared to adapt to changing circumstances and capable of learning from “reference states” such as Poland. Although East Germany was the Soviet state in which the positions of existing elites were most threatened by democratic transition, here too a surprising number succeeded in maintaining their position while filing across the bridge to market society. A concluding section outlines the alchemy through which their bureaucratic power was transmuted into property and influence in the “new Germany”

    Microbiome definition re-visited: old concepts and new challenges

    Get PDF
    peer-reviewedAbstract The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term “microbiome.” Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstrac

    Genetic differentiation among host-associated Alebra leafhoppers (Hemiptera: Cicadellidae)

    Get PDF
    The limited importance ascribed to sympatric speciation pro cesses via host race formation is partially due to the few cases of host races that have been reported among host populations. This work sheds light on the taxonomy of Alebra leafhoppers and examines the possible existence of host races among host-associated populations. The species of this genus show varying degrees of host association with deciduous trees and shrubs and, frequently, host popu lations of uncertain taxonomic status coexist and occasion ally become pests. Allozyme electrophoresis of 21 Greek populations including sympatric, local and geographically distant samples collected on 13 different plant species, show that they represent at least five species: A. albostriella Falle´n, A. viridis (Rey) (sensu Gillham), A. wahlbergi Bo Keywords: host races; leafhoppers; sympatric speciation; sibling species; allozymes; Alebra Introduction Sympatric speciation is a controversial subject in evol utionary biology (see Mayr, 1963; Futuyma and Mayer, 1980; Paterson, 1981; Via, 2001). One of the reasons for this controversy is that sympatric speciation seems to be an extremely rare phenomenon occurring only in very few groups of taxa, represented chiefly by phytophagous insects (Tauber and Tauber, 1977; Menken, 1981; Wood, 1993; Emelianov et al, 1995; Via, 1999; Finchak et al, 2000; Craig et al, 2001). The limited number of reported cases among organisms with sexual reproduction can be at least partially attributed to the fact that taxa undergoing sympatric speciation events must fulfill very restrictive biological and ecological requirements. Most sympatric speciation models demand that there is intraspecific genetic variation in traits that differentially affect the fitness of individuals that colonise new habitats or hosts (Dieckman and Doebeli, 1999; Hawthorne and Via, 2001 but see Higashi et al, 1999 and Takimoto et al, 2000). They assume that selection acting on these traits can prevent genetic exchange between populations (Bush, 1975; Tauber and Tauber, 1977; Diehl and Bush, 1989). In phytophagous insects, this means that host pref erences must be genetically determined and mating should occur on the host (Bush, 1975; Diehl and Bush, Correspondence: D Aguin-Pombo, Department of Biology, University of Madeira, Campus Universitario da Penteada, 9000 Funchal, Madeira, Portugal. E-mail: aguin uma.pt Received 12 December 2000; accepted 13 December 2001 heman and two new species. Of these, one is associated to Quercus frainetto and other is specific to Crataegus spp. Significant genetic differences among sympatric and local host populations were found only in A. albostriella, between populations on Turkey oak, beech and common alder. It is suggested that the last two of these host populations may represent different host races. The results show that both the host plant and geographical distance affect the patterns of differentiation in the genus. The formation of some spec ies seems to have been the result of allopatric speciation events while, for others, their origin can be equally explained either by sympatric or allopatric speciation.info:eu-repo/semantics/publishedVersio

    Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)?

    Get PDF
    This paper addresses the question of whether one can economically improve the robustness of a molecular phylogeny estimate by increasing gene sampling in only a subset of taxa, without having the analysis invalidated by artifacts arising from large blocks of missing data. Our case study stems from an ongoing effort to resolve poorly understood deeper relationships in the large clade Ditrysia ( > 150,000 species) of the insect order Lepidoptera (butterflies and moths). Seeking to remedy the overall weak support for deeper divergences in an initial study based on five nuclear genes (6.6 kb) in 123 exemplars, we nearly tripled the total gene sample (to 26 genes, 18.4 kb) but only in a third (41) of the taxa. The resulting partially augmented data matrix (45% intentionally missing data) consistently increased bootstrap support for groupings previously identified in the five-gene (nearly) complete matrix, while introducing no contradictory groupings of the kind that missing data have been predicted to produce. Our results add to growing evidence that data sets differing substantially in gene and taxon sampling can often be safely and profitably combined. The strongest overall support for nodes above the family level came from including all nucleotide changes, while partitioning sites into sets undergoing mostly nonsynonymous versus mostly synonymous change. In contrast, support for the deepest node for which any persuasive molecular evidence has yet emerged (78–85% bootstrap) was weak or nonexistent unless synonymous change was entirely excluded, a result plausibly attributed to compositional heterogeneity. This node (Gelechioidea + Apoditrysia), tentatively proposed by previous authors on the basis of four morphological synapomorphies, is the first major subset of ditrysian superfamilies to receive strong statistical support in any phylogenetic study. A “more-genes-only” data set (41 taxa×26 genes) also gave strong signal for a second deep grouping (Macrolepidoptera) that was obscured, but not strongly contradicted, in more taxon-rich analyses
    corecore