1,119 research outputs found

    Distributed Learning with Infinitely Many Hypotheses

    Full text link
    We consider a distributed learning setup where a network of agents sequentially access realizations of a set of random variables with unknown distributions. The network objective is to find a parametrized distribution that best describes their joint observations in the sense of the Kullback-Leibler divergence. Apart from recent efforts in the literature, we analyze the case of countably many hypotheses and the case of a continuum of hypotheses. We provide non-asymptotic bounds for the concentration rate of the agents' beliefs around the correct hypothesis in terms of the number of agents, the network parameters, and the learning abilities of the agents. Additionally, we provide a novel motivation for a general set of distributed Non-Bayesian update rules as instances of the distributed stochastic mirror descent algorithm.Comment: Submitted to CDC201

    Improved Convergence Rates for Distributed Resource Allocation

    Full text link
    In this paper, we develop a class of decentralized algorithms for solving a convex resource allocation problem in a network of nn agents, where the agent objectives are decoupled while the resource constraints are coupled. The agents communicate over a connected undirected graph, and they want to collaboratively determine a solution to the overall network problem, while each agent only communicates with its neighbors. We first study the connection between the decentralized resource allocation problem and the decentralized consensus optimization problem. Then, using a class of algorithms for solving consensus optimization problems, we propose a novel class of decentralized schemes for solving resource allocation problems in a distributed manner. Specifically, we first propose an algorithm for solving the resource allocation problem with an o(1/k)o(1/k) convergence rate guarantee when the agents' objective functions are generally convex (could be nondifferentiable) and per agent local convex constraints are allowed; We then propose a gradient-based algorithm for solving the resource allocation problem when per agent local constraints are absent and show that such scheme can achieve geometric rate when the objective functions are strongly convex and have Lipschitz continuous gradients. We have also provided scalability/network dependency analysis. Based on these two algorithms, we have further proposed a gradient projection-based algorithm which can handle smooth objective and simple constraints more efficiently. Numerical experiments demonstrates the viability and performance of all the proposed algorithms

    Constrained Consensus

    Full text link
    We present distributed algorithms that can be used by multiple agents to align their estimates with a particular value over a network with time-varying connectivity. Our framework is general in that this value can represent a consensus value among multiple agents or an optimal solution of an optimization problem, where the global objective function is a combination of local agent objective functions. Our main focus is on constrained problems where the estimate of each agent is restricted to lie in a different constraint set. To highlight the effects of constraints, we first consider a constrained consensus problem and present a distributed ``projected consensus algorithm'' in which agents combine their local averaging operation with projection on their individual constraint sets. This algorithm can be viewed as a version of an alternating projection method with weights that are varying over time and across agents. We establish convergence and convergence rate results for the projected consensus algorithm. We next study a constrained optimization problem for optimizing the sum of local objective functions of the agents subject to the intersection of their local constraint sets. We present a distributed ``projected subgradient algorithm'' which involves each agent performing a local averaging operation, taking a subgradient step to minimize its own objective function, and projecting on its constraint set. We show that, with an appropriately selected stepsize rule, the agent estimates generated by this algorithm converge to the same optimal solution for the cases when the weights are constant and equal, and when the weights are time-varying but all agents have the same constraint set.Comment: 35 pages. Included additional results, removed two subsections, added references, fixed typo
    • …
    corecore