1,723 research outputs found

    The mechanics of solids in the plastically-deformable state

    Get PDF
    The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications

    On a class of linearizable Monge-Amp\`ere equations

    Full text link
    Monge-Amp\`ere equations of the form, uxxuyyuxy2=F(u,ux,uy)u_{xx}u_{yy}-u_{xy}^2=F(u,u_x,u_y) arise in many areas of fluid and solid mechanics. Here it is shown that in the special case F=uy4f(u,ux/uy)F=u_y^4f(u, u_x/u_y), where ff denotes an arbitrary function, the Monge-Amp\`ere equation can be linearized by using a sequence of Amp\`ere, point, Legendre and rotation transformations. This linearization is a generalization of three examples from finite elasticity, involving plane strain and plane stress deformations of the incompressible perfectly elastic Varga material and also relates to a previous linearization of this equation due to Khabirov [7]

    The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics

    Get PDF
    We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium

    Supersymmetric version of a hydrodynamic system in Riemann invariants and its solutions

    Full text link
    In this paper, a supersymmetric extension of a system of hydrodynamic type equations involving Riemann invariants is formulated in terms of a superspace and superfield formalism. The symmetry properties of both the classical and supersymmetric versions of this hydrodynamical model are analyzed through the use of group-theoretical methods applied to partial differential equations involving both bosonic and fermionic variables. More specifically, we compute the Lie superalgebras of both models and perform classifications of their respective subalgebras. A systematic use of the subalgebra structures allow us to construct several classes of invariant solutions, including travelling waves, centered waves and solutions involving monomials, exponentials and radicals.Comment: 30 page

    Mobility induces global synchronization of oscillators in periodic extended systems

    Get PDF
    We study synchronization of locally coupled noisy phase oscillators which move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits several wave-like states which display local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical spatial diffusion above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by the relative size of attractor basins associated to wave-like states. Spatial diffusion disrupts these states and paves the way for the system to attain global synchronization

    High shock release in ultrafast laser irradiated metals: Scenario for material ejection

    Get PDF
    We present one-dimensional numerical simulations describing the behavior of solid matter exposed to subpicosecond near infrared pulsed laser radiation. We point out to the role of strong isochoric heating as a mechanism for producing highly non-equilibrium thermodynamic states. In the case of metals, the conditions of material ejection from the surface are discussed in a hydrodynamic context, allowing correlation of the thermodynamic features with ablation mechanisms. A convenient synthetic representation of the thermodynamic processes is presented, emphasizing different competitive pathways of material ejection. Based on the study of the relaxation and cooling processes which constrain the system to follow original thermodynamic paths, we establish that the metal surface can exhibit several kinds of phase evolution which can result in phase explosion or fragmentation. An estimation of the amount of material exceeding the specific energy required for melting is reported for copper and aluminum and a theoretical value of the limit-size of the recast material after ultrashort laser irradiation is determined. Ablation by mechanical fragmentation is also analysed and compared to experimental data for aluminum subjected to high tensile pressures and ultrafast loading rates. Spallation is expected to occur at the rear surface of the aluminum foils and a comparison with simulation results can determine a spall strength value related to high strain rates

    Extreme fluctuations in noisy task-completion landscapes on scale-free networks

    Full text link
    We study the statistics and scaling of extreme fluctuations in noisy task-completion landscapes, such as those emerging in synchronized distributed-computing networks, or generic causally-constrained queuing networks, with scale-free topology. In these networks the average size of the fluctuations becomes finite (synchronized state) and the extreme fluctuations typically diverge only logarithmically in the large system-size limit ensuring synchronization in a practical sense. Provided that local fluctuations in the network are short-tailed, the statistics of the extremes are governed by the Gumbel distribution. We present large-scale simulation results using the exact algorithmic rules, supported by mean-field arguments based on a coarse-grained description.Comment: 16 pages, 6 figures, revte

    Facts, Values and Quanta

    Full text link
    Quantum mechanics is a fundamentally probabilistic theory (at least so far as the empirical predictions are concerned). It follows that, if one wants to properly understand quantum mechanics, it is essential to clearly understand the meaning of probability statements. The interpretation of probability has excited nearly as much philosophical controversy as the interpretation of quantum mechanics. 20th century physicists have mostly adopted a frequentist conception. In this paper it is argued that we ought, instead, to adopt a logical or Bayesian conception. The paper includes a comparison of the orthodox and Bayesian theories of statistical inference. It concludes with a few remarks concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late
    corecore