57 research outputs found

    Nuclear neutrino energy spectra in high temperature astrophysical environments

    Full text link
    Astrophysical environments that reach temperatures greater than \sim 100 keV can have significant neutrino energy loss via both plasma processes and nuclear weak interactions. We find that nuclear processes likely produce the highest-energy neutrinos. Among the important weak nuclear interactions are both charged current channels (electron capture/emission and positron capture/emission) and neutral current channels (de-excitation of nuclei via neutrino pair emission). We show that in order to make a realistic prediction of the nuclear neutrino spectrum, one must take nuclear structure into account; in some cases, the most important transitions may involve excited states, possibly in both parent and daughter nuclei. We find that the standard technique of producing a neutrino energy spectrum by using a single transition with a Q-value and matrix element chosen to fit published neutrino production rates and energy losses will not accurately capture important spectral features.Comment: 11 pages, 17 figure

    Neutrino Spectra from Nuclear Weak Interactions in sdsd-Shell Nuclei Under Astrophysical Conditions

    Full text link
    We present shell model calculations of nuclear neutrino energy spectra for 70 sdsd-shell nuclei over the mass number range A=2135A=21-35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays and, for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller-Fowler-Newman temperature-density grid for these interaction channels for each nucleus. We use the full sdsd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35-40 MeV, employing a modification of the Brink-Axel hypothesis to handle high temperature population factors and the nuclear partition functions.Comment: 15 pages, 8 figures. Until data available at JINA-CEE, contact GWM for spectra data file

    Neutrino Pair Emission from Hot Nuclei During Stellar Collapse

    Full text link
    We present shell-model calculations showing that residual interaction-induced configuration mixing enhances the rate of neutral current de-excitation of thermally excited nuclei into neutrino-antineutrino pairs. Though our calculations reinforce the conclusions of previous studies that this process is the dominant source of neutrino pairs near the onset of neutrino trapping during stellar collapse, our shell-model result has the effect of increasing the energy of these pairs, possibly altering their role in entropy transport in supernovae.Comment: 9 pages, 8 figure

    Modification of the Brink-Axel Hypothesis for High Temperature Nuclear Weak Interactions

    Full text link
    We present shell model calculations of electron capture strength distributions in A=28 nuclei and computations of the corresponding capture rates in supernova core conditions. We find that in these nuclei the Brink-Axel hypothesis for the distribution of Gamow-Teller strength fails at low and moderate initial excitation energy, but may be a valid tool at high excitation. The redistribution of GT strength at high initial excitation may affect capture rates during collapse. If these trends which we have found in lighter nuclei also apply for the heavier nuclei which provide the principal channels for neutronization during stellar collapse, then there could be two implications for supernova core electron capture physics. First, a modified Brink-Axel hypothesis could be a valid approximation for use in collapse codes. Second, the electron capture strength may be moved down significantly in transition energy, which would likely have the effect of increasing the overall electron capture rate during stellar collapse.Comment: 15 pages, 19 figure

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore