4 research outputs found

    Analysis of the Brayton cycle coupled with a small fluoride salt-cooled high-temperature reactor

    Get PDF
    Considering the environmental conditions and transportation conditions of remote areas, an inherently safe integrated energy conversion system featuring miniaturization, modularization, and high environmental adaptability is needed. The small fluoride salt-cooled high-temperature reactor (FHR) coupled with the Brayton cycle is a promising design. In this paper, the efficiency, exergy efficiency, and exergy loss of four different configurations of the supercritical carbon dioxide (S-CO2) Brayton cycle coupled with a new small fluoride salt-cooled high-temperature reactor are compared. The S-CO2 recompressor Brayton cycle has the best overall performance. Meanwhile, the effects of the cooling conditions on the thermal efficiency and exergy efficiency of different cycle configurations are discussed. When the core outlet temperature is 700°C, the efficiency of the designed S-CO2 recompressor Brayton cycle is approximately 42–44% when the cycle minimum temperature is 20–40°C. In conclusion, the designed small FHR coupled with the Brayton cycle system offers interesting performances in power generation, mineral mining, industrial steam supply, molten salt energy storage, and high-temperature hydrogen production in remote areas

    RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES

    No full text
    The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion

    RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES

    Get PDF
    The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion

    The tomato genome sequence provides insights into fleshy fruit evolution

    Get PDF
    Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
    corecore