10 research outputs found

    Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice [preprint]

    Get PDF
    Prime editors (PEs) mediate genome modification without utilizing double-stranded DNA breaks or exogenous donor DNA as a template. PEs facilitate nucleotide substitutions or local insertions or deletions within the genome based on the template sequence encoded within the prime editing guide RNA (pegRNA). However, the efficacy of prime editing in adult mice has not been established. Here we report an NLS-optimized SpCas9-based prime editor that improves genome editing efficiency in both fluorescent reporter cells and at endogenous loci in cultured cell lines. Using this genome modification system, we could also seed tumor formation through somatic cell editing in the adult mouse. Finally, we successfully utilize dual adeno-associated virus (AAVs) for the delivery of a split-intein prime editor and demonstrate that this system enables the correction of a pathogenic mutation in the mouse liver. Our findings further establish the broad potential of this new genome editing technology for the directed installation of sequence modifications in vivo, with important implications for disease modeling and correction

    Precision Cas9 Genome Editing in vivo with All-in-one, Self-targeting AAV Vectors [preprint]

    Get PDF
    Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits, especially for large effectors like Cas9s. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. The use of compact effectors has enabled single-AAV delivery of Cas9s with 1-3 guides for edits that use end-joining repair pathways, but many precise edits that correct disease-causing mutations in vivo require homology-directed repair (HDR) templates. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs to produce segmental deletions, or a single sgRNA with an HDR template. We also examine the utility of Nme2Cas9 target sites in the vector for self-inactivation. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice. These results will enable single-vector AAVs to achieve diverse therapeutic genome editing outcomes

    Enhanced Cas12a editing in mammalian cells and zebrafish

    Get PDF
    Type V CRISPR-Cas12a systems provide an alternate nuclease platform to Cas9, with potential advantages for specific genome editing applications. Here we describe improvements to the Cas12a system that facilitate efficient targeted mutagenesis in mammalian cells and zebrafish embryos. We show that engineered variants of Cas12a with two different nuclear localization sequences (NLS) on the C terminus provide increased editing efficiency in mammalian cells. Additionally, we find that pre-crRNAs comprising a full-length direct repeat (full-DR-crRNA) sequence with specific stem-loop G-C base substitutions exhibit increased editing efficiencies compared with the standard mature crRNA framework. Finally, we demonstrate in zebrafish embryos that the improved LbCas12a and FnoCas12a nucleases in combination with these modified crRNAs display high mutagenesis efficiencies and low toxicity when delivered as ribonucleoprotein complexes at high concentration. Together, these results define a set of enhanced Cas12a components with broad utility in vertebrate systems

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Clarification of human blood ILC subtype interrelatedness and discovery of amphiregulin production by human NK cells shed light on HIV-1 pathogenesis [preprint]

    Get PDF
    Human blood innate lymphoid cells (ILCs), which include ILCs and natural killer (NK) cells, derive from a common CD117+ILC precursor (ILCP). Yet, the relationship among the ILC subsets remains unclear. Bulk and single cell RNA-Seq and ATAC-Seq showed that blood ILC subsets cluster into ILC2s, ILCPs, a mixed cluster of CD56dim and CD56− NK cells, and a separate cluster of CD56hiNK cells that share features with both ILCs and CD56dimNK cells. In surprising contrast to mice, tissue repair protein amphiregulin was produced by human NK cells, with higher levels in CD56hiNK cells than in ILCs. Amphiregulin production by human NK cells was promoted by TCF7/WNT signaling and inhibited by TGFB1, a cytokine elevated in people living with HIV-1. Knockout of RUNX3, a WNT antagonist downstream of TGFB1, increased amphiregulin production in human NK cells. CD4+T cell depletion in people living with HIV-1, or from PBMCs in tissue culture, was associated with expansion of metabolically inert, nonfunctional CD56−NK cells. Experiments in tissue culture and in humanized mice revealed that CD56−NK cells are derived from CD56dimNK cells, and that CD4+T cell-derived IL-2 stimulates MTOR activity in CD56dimNK cells to prevent this transition. These findings clarify how ILC subsets are related to each other and provide insight into how HIV-1 infection disrupts ILC homeostasis and contributes to pathology

    Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing

    No full text
    Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9-sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces \u3e 80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings

    Majorana DUSEL R&D Final Report

    No full text
    This report summarizes the work performed at PNNL under the project Majorana Neutrinoless Double Beta Decay DUSEL R&D over the period of FY07-FY09

    Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing

    No full text
    Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9-sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces >80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings
    corecore