102 research outputs found
Recommended from our members
Profiles of Ocean surface Heating (POSH): A New Model of Upper Ocean Diurnal Warming
Shipboard radiometric measurements of diurnal warming at the ocean surface and profiles through the diurnal thermocline were utilized to assess the temporal and vertical variability and to develop a new physics-based model of near-surface warming. The measurements and modeled diurnal warming were compared, with the goal of comprehensively evaluating differences between the data and model results. On the basis of these results, the diurnal model was refined while attempting to maintain agreement with the measurements. Simplified bulk models commonly do not provide information on the vertical structure within the warm layer, but this new model predicts the vertical temperature profile within the diurnal thermocline using an empirically derived function dependent on wind speed. The vertical profile of temperature provides both a straightforward methodology for modeling differences due to diurnal warming between measurements made at different depths (e.g., in situ measurements at various depths and measurements of the surface temperatures by satellite radiometers) and information on upper ocean thermal structure. Additionally, the model estimates of diurnal warming at the ocean surface are important for air-sea heat and gas flux calculations, blending satellite sea surface temperature fields, and air-sea interaction studies.
Copyright 2009 by the American Geophysical Union
The Northeast Water polynya as an atmospheric CO2 sink: a seasonal rectification hypothesis
During the multidisciplinary âNEW92â cruise of the United States Coast Guard Cutter (USCGC) Polar Sea to the recurrent Northeast Water (NEW) Polynya (77â81°N, 6â17°W; JulyâAugust 1992), total dissolved inorganic carbon and total alkalinity in the water column were measured with high precision to determine the quantitative impact of biological processes on the regional air-sea flux of carbon. Biological processes depleted the total inorganic carbon of summer surface waters by up to 2 mol C mâ2 or about 3%. On a regional basis this depletion correlated with depth-integrated values of chlorophyll a, particulate organic carbon, and the inorganic nitrogen deficit. Replacement of this carbon through exchange with the atmosphere was stalled owing to the low wind speeds during the month of the cruise, although model calculations indicate that the depletion could be replenished by a few weeks of strong winds before ice forms in the autumn. These measurements and observations allowed formulation of a new hypothesis whereby seasonally ice-covered regions like the NEW Polynya promote a unique biologically and physically mediated ârectificationâ of the typical (ice free, low latitude) seasonal cycle of air-sea CO2 flux. The resulting carbon sink is consistent with other productivity estimates and represents an export of biologically cycled carbon either to local sediments or offshore. If this scenario is representative of seasonally ice-covered Arctic shelves, then the rectification process could provide a small, negative feedback to excess atmospheric CO2
FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12(11), (2020): 1796, doi:10.3390/rs12111796.Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale oceanâatmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate airâsea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of oceanâatmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled oceanâatmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.C.L.G. was funded by NASA grant 80NSSC18K0837. C.A.C. was funded by NASA grants 80NSSC18K0778 and 80NSSC20K0662. J.T.F. was funded by NASA grants NNX17AH54G, NNX16AH76G, and 80NSSC19K1256. S.T.G. was funded by the National Science Foundation grant PLR-1425989 and by the NASA Ocean Vector Winds Science Team grant 80NSSC19K0059. M.B. was funded in part by the Ocean Observing and Monitoring Division, Climate Program Office (FundRef number 100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the NASA Ocean Vector Winds Science Team grant through NASA/JPL. H.S. was funded by National Oceanic and Atmospheric Administration (NOAA) grant NA19OAR4310376 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution
Saildrone: adaptively sampling the marine environment
Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E744-E762, doi:10.1175/BAMS-D-19-0015.1.From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science teamâs validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, airâsea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of airâsea fluxes in the Arctic Ocean and around North Brazil Current rings.The Saildrone data collection mission was sponsored by the Saildrone Award, an annual data collection mission awarded by Saildrone Inc., and the Schmidt Family Foundation. The research was funded by the NASA Physical Oceanography Program Grant 80NSSC18K0837 and 80NSSC18K1441. The work by T. M. Chin, J. Vazquez-Cuerzo, and V. Tsontos was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Piero L.F. Mazzini was supported by California Sea Grant Award NA18OAR4170073. We thank CeNCOOS for providing the HF radar data in the Gulf of the Farallones. Jose Gomez-Valdes was supported by CONACYT Grant 257125, and by CICESE. Work by Joel Scott and Ivona Cetinic was supported through NASA PACE. The work by Lisan Yu was supported by NOAA Ocean Observing and Monitoring Division under Grant NA14OAR4320158
Cirene : air-sea iInteractions in the Seychelles-Chagos thermocline ridge region
Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.The VascoâCirene program ex-plores how strong airâsea inter-actions promoted by the shallow thermocline and high sea surface temperature in the SeychellesâChagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and airâsea flux observations in this region in Jan-uaryâFebruary 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers.
Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the SeychellesâChagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.CNES funded the Vasco part of the experiment; INSU
funded the Cirene part. R/V SuroĂźt is an Ifremer ship. The
contributions from ODU, WHOI, and FOI (Sweden) are
supported by the National Science Foundation under Grant
Number 0525657. The participation of the University of
Miami group was funded though NASA (NNG04HZ33C).
PMEL participation was supported through NOAAâs Office
of Climate Observation
The SOLAS air-sea gas exchange experiment (SAGE) 2004
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating
gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in
high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the
expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and
summary of the main experimental findings. The release site was selected from a pre-voyage desktop
study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the
south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In
common with other mesoscale iron addition experiments (FeAXâs), SAGE was designed as a
Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange
processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton
bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled
volume (patch) of ocean and the air-sea tracer exchange at the 10âs of kmâs scale, in conjunction with
the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the
gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments.
There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton
within the first day following iron addition, but in contrast to other FeAXâs, rates of net primary
production and column-integrated chlorophyll a concentrations had only doubled relative to the
unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions
totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron
enrichment experiments. An investigation of the factors limiting bloom development considered co-
limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst
incident light levels and the initial Si:N ratio were the lowest recorded in all FeAXâs to date, there was
only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition
was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton
growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing
were all considered as factors that prevented significant biomass accumulation. In line with the limited
response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAXâs dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAXâs. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through
the New Zealand Foundation for Research, Science and Technology (FRST) programs
(C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean
Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for
specific collaborations by the US National Science Foundation from grants OCE-0326814
(Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural
Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand
International Science and Technology (ISAT) linkages fund provided additional funding
(Archer and Ziolkowski), and the many collaborator institutions also provided valuable
support
Recommended from our members
An overview of MODIS capabilities for ocean science observations
The Moderate Resolution Imaging Spectroradiometer (MODIS) will add a significant new capability for investigating the 70% of the Earth's surface that is covered by oceans, in addition to contributing to the continuation of a decadal scale time series necessary for climate change assessment in the oceans. Sensor capabilities of particular importance for improving the accuracy of ocean products include high SNR and high stability for narrow or spectral bands, improved onboard radiometric calibration and stability monitoring, and improved science data product algorithms. Spectral bands for resolving solar-stimulated chlorophyll fluorescence and a split window in the 4-/spl mu/m region for SST will result in important new global ocean science products for biology and physics. MODIS will return full global data at 1-km resolution. The complete suite of Levels 2 and 3 ocean products is reviewed, and many areas where MODIS data are expected to make significant, new contributions to the enhanced understanding of the oceans' role in understanding climate change are discussed. In providing a highly complementary and consistent set of observations of terrestrial, atmospheric, and ocean observations, MODIS data will provide important new information on the interactions between Earth's major components
Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure
© 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and
NOAA Centers for Oceans and Human Healt
Air-sea fluxes with a focus on heat and momentum
Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W mâ2 and a bias of less than 5 W mâ2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500â1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1â3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the oceanâs influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections
- âŠ