28 research outputs found

    Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4

    Get PDF
    Absence epilepsy, characterized by spike–wave discharges (SWD) in the electroencephalogram, arises from aberrations within the circuitry of the cerebral cortex and thalamus that regulates awareness. The inbred mouse strain C3H/HeJ is prone to absence seizures, with a major susceptibility locus, spkw1, accounting for most of the phenotype. Here we find that spkw1 is associated with a hypomorphic retroviral-like insertion mutation in the Gria4 gene, encoding one of the four amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) receptor subunits in the brain. Consistent with this, Gria4 knockout mice also have frequent SWD and do not complement spkw1. In contrast, null mutants for the related gene Gria3 do not have SWD, and Gria3 loss actually lowers SWD of spkw1 homozygotes. Gria3 and Gria4 encode the predominant AMPA receptor subunits in the reticular thalamus, which is thought to play a central role in seizure genesis by inhibiting thalamic relay cells and promoting rebound burst firing responses. In Gria4 mutants, synaptic excitation of inhibitory reticular thalamic neurons is enhanced, with increased duration of synaptic responses—consistent with what might be expected from reduction of the kinetically faster subunit of AMPA receptors encoded by Gria4. These results demonstrate for the first time an essential role for Gria4 in the brain, and suggest that abnormal AMPA receptor-dependent synaptic activity can be involved in the network hypersynchrony that underlies absence seizures

    Temporal-spatial profiling of pedunculopontine galanin-cholinergic neurons in the lactacystin rat model of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates a multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor- and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, whilst being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilising the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration

    Convolutions, Multipliers and Commutants for the Backward Shift Operator

    No full text
    [Dimovski Ivan H.; Димовски Иван Х.]; [Mineff Dimitar M.; Minev Dimitar; Минев Димитър М.]An algebraic approach to the backward shift operator U* is developed. The convolutions of all linear right inverse operators of U* are found. The multiplier operators of these convolutions are determined. An explicit representation of the commutant of U* in an invariant hyperplane is given. An application to the multiplier problem of T. A. Leontieva's expansions in a closed domain is made

    Top-down control of spatial memory visualization in early visual cortex

    No full text

    Glutamate receptor functions in sensory relay in the thalamus.

    No full text
    It is known that glutamate is a major excitatory transmitter of sensory and cortical afferents to the thalamus. These actions are mediated via several distinct receptors with postsynaptic excitatory effects predominantly mediated by ionotropic receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate varieties (NMDA). However, there are also other kinds of glutamate receptor present in the thalamus, notably the metabotropic and kainate types, and these may have more complex or subtle roles in sensory transmission. This paper describes recent electrophysiological experiments done in vitro and in vivo which aim to determine how the metabotropic and kainate receptor types can influence transmission through the sensory thalamic relay. A particular focus will be how such mechanisms might operate under physiological conditions

    Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse

    No full text
    Synapse elimination occurs throughout the nervous system during development, and is essential for the formation of neural circuits. The mechanisms underlying synapse elimination in the brain, however, remain largely unknown. Using whole-cell patch-clamp recording in a slice preparation, we examined synaptic refinement at the somatosensory relay synapse (lemniscal synapse) in the ventral basal thalamus of the mouse during postnatal development. At 1 week old, each neuron in the ventral basal thalamus is innervated by multiple lemniscal fibres, as revealed by multiple increments of the synaptic response. By 16 days after birth (P16), the majority of neurons showed an all-or-none response, suggesting a single fibre innervation. In addition to synapse elimination, extensive modifications in synaptic properties occur during the second week after birth. The ratio of AMPA to NMDA component of the synaptic current tripled between P7 and P17. The decay constant of the NMDA component decreased by about 70% between P7 and P17; ifenprodil (3 μm) reduced the NMDA component by about 40% in neurons at P7–9, but was much less effective at P20–24. On the other hand, there was little change in the inward rectification of AMPA component between P11 and P24. Paired-pulse ratios, measured at −70 and +40 mV, were stable between P7 and P24. Whisker deprivation from P5 through P19 had no effect on the elimination or the maturation of the lemniscal synapse. These results suggest that the lemniscal synapse in the ventral basal thalamus undergoes extensive refinement during the second week, and that sensory experience has a rather limited role in this process
    corecore