45 research outputs found

    Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis

    Get PDF
    New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB

    High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors

    Get PDF
    A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Risk definition and risk governance in social innovation processes: A comparative case study across 4 EU-countries

    Get PDF
    Contains fulltext : 152677.pdf (publisher's version ) (Open Access)75 p

    GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis

    No full text
    Mycobacterium tuberculosis possesses a thick and highly hydrophobic cell wall principally composed of a mycolyl-arabinogalactan-peptidoglycan complex, which is critical for survival and virulence. DprE1 is a well-characterized component of decaprenyl-phospho-ribose epimerase, which produces decaprenyl-phospho-arabinose (DPA) for the biosynthesis of mycobacterial arabinans. Upstream of dprE1 lies rv3789, which encodes a short transmembrane protein of the GtrA family, whose members are often involved in the synthesis of cell surface polysaccharides. We demonstrate that rv3789 and dprE1 are cotranscribed from a common transcription start site situated 64 bp upstream of rv3789. Topology mapping revealed four transmembrane domains in Rv3789 and a cytoplasmic C terminus consistent with structural models built using analysis of sequence coevolution. To investigate its role, we generated an unmarked rv3789 deletion mutant in M. tuberculosis. The mutant was characterized by impaired growth and abnormal cell morphology, since the cells were shorter and more swollen than wild-type cells. This phenotype likely stems from the decreased incorporation of arabinan into arabinogalactan and was accompanied by an accumulation of DPA. A role for Rv3789 in arabinan biosynthesis was further supported by its interaction with the priming arabinosyltransferase AftA, as demonstrated by a two-hybrid approach. Taken together, the data suggest that Rv3789 does not act as a DPA flippase but, rather, recruits AftA for arabinogalactan biosynthesis. IMPORTANCE Upstream of the essential dprE1 gene, encoding a key enzyme of the decaprenyl phospho-arabinose (DPA) pathway, lies rv3789, coding for a short transmembrane protein of unknown function. In this study, we demonstrated that rv3789 and dprE1 are cotranscribed from a common transcription start site located 64 bp upstream of rv3789 in M. tuberculosis. Furthermore, the deletion of rv3789 led to a reduction in arabinan content and to an accumulation of DPA, confirming that Rv3789 plays a role in arabinan biosynthesis. Topology mapping, structural modeling, and protein interaction studies suggest that Rv3789 acts as an anchor protein recruiting AftA, the first arabinosyl transferase. This investigation provides deeper insight into the mechanism of arabinan biosynthesis in mycobacteria
    corecore