176 research outputs found

    Genomic Relationships and Speciation Times of Human, Chimpanzee, and Gorilla Inferred from a Coalescent Hidden Markov Model

    Get PDF
    The genealogical relationship of human, chimpanzee, and gorilla varies along the genome. We develop a hidden Markov model (HMM) that incorporates this variation and relate the model parameters to population genetics quantities such as speciation times and ancestral population sizes. Our HMM is an analytically tractable approximation to the coalescent process with recombination, and in simulations we see no apparent bias in the HMM estimates. We apply the HMM to four autosomal contiguous human–chimp–gorilla–orangutan alignments comprising a total of 1.9 million base pairs. We find a very recent speciation time of human–chimp (4.1 ± 0.4 million years), and fairly large ancestral effective population sizes (65,000 ± 30,000 for the human–chimp ancestor and 45,000 ± 10,000 for the human–chimp–gorilla ancestor). Furthermore, around 50% of the human genome coalesces with chimpanzee after speciation with gorilla. We also consider 250,000 base pairs of X-chromosome alignments and find an effective population size much smaller than 75% of the autosomal effective population sizes. Finally, we find that the rate of transitions between different genealogies correlates well with the region-wide present-day human recombination rate, but does not correlate with the fine-scale recombination rates and recombination hot spots, suggesting that the latter are evolutionarily transient

    Anomalous Transport in Conical Granular Piles

    Full text link
    Experiments on 2+1-dimensional piles of elongated particles are performed. Comparison with previous experiments in 1+1 dimensions shows that the addition of one extra dimension to the dynamics changes completely the avalanche properties, appearing a characteristic avalanche size. Nevertheless, the time single grains need to cross the whole pile varies smoothly between several orders of magnitude, from a few seconds to more than 100 hours. This behavior is described by a power-law distribution, signaling the existence of scale invariance in the transport process.Comment: Accepted in PR

    The identification and functional annotation of RNA structures conserved in vertebrates

    Get PDF
    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∌516,000 human genomic regions containing CRSs. We find that a substantial fraction of human–mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3â€Č ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.</jats:p

    Kepler-432: a red giant interacting with one of its two long period giant planets

    Get PDF
    We report the discovery of Kepler-432b, a giant planet (Mb=5.41−0.18+0.32MJup,Rb=1.145−0.039+0.036RJupM_b = 5.41^{+0.32}_{-0.18} M_{\rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{\rm Jup}) transiting an evolved star (M⋆=1.32−0.07+0.10M⊙,R⋆=4.06−0.08+0.12R⊙)(M_\star = 1.32^{+0.10}_{-0.07} M_\odot, R_\star = 4.06^{+0.12}_{-0.08} R_\odot) with an orbital period of Pb=52.501129−0.000053+0.000067P_b = 52.501129^{+0.000067}_{-0.000053} days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134−0.0089+0.0098e = 0.5134^{+0.0098}_{-0.0089}, which we also measure independently with asterodensity profiling (AP; e=0.507−0.114+0.039e=0.507^{+0.039}_{-0.114}), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; Mcsin⁡ic=2.43−0.24+0.22MJup,Pc=406.2−2.5+3.9M_c \sin{i_c} = 2.43^{+0.22}_{-0.24} M_{\rm Jup}, P_c = 406.2^{+3.9}_{-2.5} days), and adaptive optics imaging revealed a nearby (0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015 (submitted Nov 11, 2014). Updated with minor changes to match published versio

    Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    Get PDF
    BACKGROUND: Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls. RESULTS: We have generated ~3.84 million shotgun sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. CONCLUSION: The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific regions for analysis and resequencing

    ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65

    Get PDF
    Results on the obliquity of exoplanet host stars—the angle between the stellar spin axis and the planetary orbital axis—provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1σ level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.United States. National Aeronautics and Space Administration (Kepler Participating Scientist Program Grant NNX12AC76G

    Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF).

    Get PDF
    Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in sub-arctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies

    Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

    Get PDF
    Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes.Systematic review and meta-analysis.We included double-blinded, randomised controlled trials (RCTs) evaluating SGLT2-i administered in the highest approved therapeutic doses (canagliflozin 300 mg/day, dapagliflozin 10 mg/day, and empagliflozin 25 mg/day) for ≄12 weeks. Comparison groups could receive placebo or oral antidiabetic drugs (OAD) including metformin, sulphonylureas (SU), or dipeptidyl peptidase 4 inhibitors (DPP-4-i). Trials were identified through electronic databases and extensive manual searches. Primary outcomes were glycated haemoglobin A1c (HbA1c) levels, serious adverse events, death, severe hypoglycaemia, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE.Meta-analysis of 34 RCTs with 9,154 patients showed that SGLT2-i reduced HbA1c compared with placebo (mean difference -0.69%, 95% confidence interval -0.75 to -0.62%). We downgraded the evidence to 'low quality' due to variability and evidence of publication bias (P = 0.015). Canagliflozin was associated with the largest reduction in HbA1c (-0.85%, -0.99% to -0.71%). There were no differences between SGLT2-i and placebo for serious adverse events. SGLT2-i increased the risk of urinary and genital tract infections and increased serum creatinine, and exerted beneficial effects on bodyweight, blood pressure, lipids and alanine aminotransferase (moderate to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence).This review includes a large number of patients with type 2 diabetes and found that SGLT2-i reduces HbA1c with a notable increased risk in non-serious adverse events. The analyses may overestimate the intervention benefit due bias
    • 

    corecore