748 research outputs found

    Block teaching and the three A’s: attendance, attainment and attitudes

    Get PDF
    This paper examines results from a small study that looked at the relationship between intensive teaching in blocks and its impact on students’ attendance and attainment.  The research also looked at students’ perceptions of block teaching and their engagement with the taught topic, and whether the students felt that block delivery method enabled them to learn more than traditional delivery methods.  The results indicate that students prefer to be taught in the block format and that they feel more engaged.  Students’ attendance when taught in blocks is significantly improved which could contribute to attainment.  Ideas which might help inform embedded practice are listed at the end

    Submission in response to the Australian Government’s Consultation Paper on the Establishment of the Royal Commission into Institutional Responses to Child Sexual Abuse

    Get PDF
    A submission in response to the Australian Government\u27s Consultation Paper on the Establishment of the Royal Commission into Institutional Responses to Child Sexual Abuse. Introduction We are a team of academics and researchers, from the disciplines of historical studies, social work and archival science, who have substantive years of experience working on projects exploring the legacy of Australia\u27s institutional \u27care\u27 of children. Our work in this space, particularly since the release of the Forgotten Australians report in 2004, has involved ongoing engagement with a broad range of stakeholders, including care leavers, support and advocacy groups, past and current providers of out-of-home care, state and federal government departments, and cultural institutions. We welcome the opportunity to make a submission in response to the Australian Government\u27s Consultation Paper on the Establishment of the Royal Commission into Institutional Responses to Child Sexual Abuse. Our submission discusses the vital importance that records will play in this Royal Commission, with particular reference to records in the custody of past providers in religious, charitable and government sectors. We submit that records are a key issue for this Royal Commission

    Process control in agile supply chain network

    Get PDF
    The work comprises a new theoretical development applied to aid decision making in an increasingly important commercial sector. Agile supply, where small volumes of high margin, short life cycle innovative products are offered, is increasingly carried out through a complex global supply chain network. We outline an equilibrium solution in such a supply chain network, which works through limited cooperation and coordination along edges (links) in the network. The links constitute the stochastic modelling entities rather than the nodes of the network. We utilise newly developed phase plane analysis to identify, model and predict characteristic behaviour in supply chain networks. The phase plane charts profile the flow of inventory and identify out of control conditions. They maintain quality within the network, as well as intelligently track the way the network evolves in conditions of changing variability. The methodology is essentially distribution free, relying as it does on the study of forecasting errors, and can be used to examine contractual details as well as strategic and game theoretical concepts between decision-making components (agents) of a network. We illustrate with typical data drawn from supply chain agile fashion products

    UB Knightlines Spring 2016

    Get PDF
    The UB Knightlines newsletter for spring of 2016. This issue contains articles discussing the heart of the city storytelling series, SASD student Erin LaFavor’s story of entrepreneurship, two UB alumni being awarded teaching awards, alumnus Jim Ford honored at White House for STEM education, UB chaplain leading an interfaith prayer vigil, UB model UN team’s win at the National Model United Nations Europe Conference, SASD students exhibiting at book fair at Yale, UB students win the Connecticut Space Grant, UB seminar on image, perception, and self-perception, a new scholarship to at risk students, UB and the Connecticut Technology Council host a programming challenge, a new Student Entrepreneur Center opens its doors, UB student volunteering during Martin Luther King Jr. Day, emeritus professor Richard Allen’s appearance on Prairie Home Companion, faculty news, alumni news, books published by alums and faculty, an African-American alumni reunion, and other campus and sports news

    Childhood poverty is associated with altered hippocampal function and visuospatial memory in adulthood

    Get PDF
    Childhood poverty is a risk factor for poorer cognitive performance during childhood and adulthood. While evidence linking childhood poverty and memory deficits in adulthood has been accumulating, underlying neural mechanisms are unknown. To investigate neurobiological links between childhood poverty and adult memory performance, we used functional magnetic resonance imaging (fMRI) during a visuospatial memory task in healthy young adults with varying income levels during childhood. Participants were assessed at age 9 and followed through young adulthood to assess income and related factors. During adulthood, participants completed a visuospatial memory task while undergoing MRI scanning. Patterns of neural activation, as well as memory recognition for items, were assessed to examine links between brain function and memory performance as it relates to childhood income. Our findings revealed associations between item recognition, childhood income level, and hippocampal activation. Specifically, the association between hippocampal activation and recognition accuracy varied as a function of childhood poverty, with positive associations at higher income levels, and negative associations at lower income levels. These prospective findings confirm previous retrospective results detailing deleterious effects of childhood poverty on adult memory performance. In addition, for the first time, we identify novel neurophysiological correlates of these deficits localized to hippocampus activation

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics

    Get PDF
    A fast neutron mutagenised population was generated in Pisum sativum L. (pea) to enable the identification and isolation of genes underlying traits and processes. Studies of a number of phenotypic traits have clearly demonstrated the utility of the resource by associating gene deletions with phenotype followed by functional tests exploiting additional mutant sources, from both induced and natural variant germplasm. For forward genetic screens next generation sequencing methodologies provide an opportunity for identifying genes associated with deletions rapidly and systematically. The application of rapid reverse genetic screens of the fast neutron mutant pea population supports conclusions on the frequency of deletions based on phenotype alone. These studies further suggest that large deletions affecting one or more loci can be non-deleterious to the pea genome, yielding mutants that could not be obtained by other means. Deletion mutants affecting genes associated with seed metabolism and storage are providing unique opportunities to identify the products of complex and related gene families, and to study the downstream consequences of such deletion

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks

    Get PDF
    Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry
    corecore