241 research outputs found

    Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life

    Get PDF
    A compilation of data on volumes and masses of evaporite deposits is used as the basis for reconstruction of the salinity of the ocean in the past. Chloride is tracked as the only ion essentially restricted to the ocean, and past salinities are calculated from reconstructed chlorine content of the ocean. Models for ocean salinity through the Phanerozoic are developed using maximal and minimal estimates of the volumes of existing evaporite deposits, and using constant and declining volumes of ocean water through the Phanerozoic. We conclude that there have been significant changes in the mean salinity of the ocean accompanying a general decline throughout the Phanerozoic. The greatest changes are related to major extractions of salt into the young ocean basins which developed during the Mesozoic as Pangaea broke apart. Unfortunately, the sizes of these salt deposits are also the least well known. The last major extractions of salt from the ocean occurred during the Miocene, shortly after the large scale extraction of water from the ocean to form the ice cap of Antarctica. However, these two modifications of the masses of H2O and salt in the ocean followed in sequence and did not cancel each other out. Accordingly, salinities during the Early Miocene were between 37‰ and 39‰. The Mesozoic was a time of generally declining salinity associated with the deep sea salt extractions of the North Atlantic and Gulf of Mexico (Middle to Late Jurassic) and South Atlantic (Early Cretaceous). The earliest of the major extractions of the Phanerozoic occurred during the Permian. There were few large extractions of salt during the earlier Palaeozoic. The models suggest that this was a time of relatively stable but slowly increasing salinities ranging through the upper 40‰'s into the lower 50‰'s. Higher salinities for the world ocean have profound consequences for the thermohaline circulation of the ocean in the past. In the modern ocean, with an average salinity of about 34.7‰, the density of water is only very slightly affected by cooling as it approaches the freezing point. Consequently, salinization through sea-ice formation or evaporation is usually required to make water dense enough to sink into the ocean interior. At salinities above about 40‰ water continues to become more dense as it approaches the freezing point, and salinization is not required. The energy-consuming phase changes involved in sea-ice formation and evaporation would not be required for vertical circulation in the ocean. The hypothesized major declines in salinity correspond closely to the evolution of both planktonic foraminifera and calcareous nannoplankton. Both groups were restricted to shelf regions in the Jurassic and early Cretaceous, but spread into the open ocean in the mid-Cretaceous. Their availability to inhabit the open ocean may be directly related to the decline in salinity. The Permian extraction may have created stress for marine organisms and may have been a factor contributing to the end-Permian extinction. The modeling also suggests that there was a major salinity decline from the Late Precambrian to the Cambrian, and it is tempting to speculate that this may have been a factor in the Cambrian explosion of life

    Hydrocarbons as ore fluids

    Get PDF
    Conventional wisdom holds that aqueous solutions are the only non-magmatic fluids capable of concentrating metals in the Earth’s crust. The role of hydrocarbons in metal concentration is relegated to providing geochemical barriers at which the metals are reduced and immobilised. Liquid hydrocarbons, however, are also known to be able to carry appreciable concentrations of metals, and travel considerable distances. Here we report the results of an experimental determination of bulk solubilities of Au, Zn, and U in a variety of crude oils at temperatures up to 300 °C and of the benchtop-scale transport experiments that simulate hydrocarbon-mediated re-deposition of Zn at 25–200 °C. It has been demonstrated that the metal concentrations obtained in solubility experiments are within the range of concentrations that are typically considered sufficient for aqueous fluids to form ore bodies. It has also been shown that Zn can be efficiently transported and re-deposited by hydrocarbons. These results provide direct evidence of the ability of natural crude oils to mobilise metals available in hydrocarbon-associated host rocks, and transport them in concentrations sufficient to contribute to ore-forming processes

    Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 74 (2010): 5494-5513, doi:10.1016/j.gca.2010.07.003.Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.This study received financial support from the Ocean Drilling Program Schlanger Fellowship (to P.R. Craddock), the WHOI Deep Ocean Exploration Institute Graduate Fellowship (to E. Reeves) and NSF grant OCE–0327448

    Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    Get PDF
    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)(3), As(SH)(2)S(- )and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S(n)(2-), n = 2–6, the bisulfide anion, SH(-), hydrogen sulfide, H(2)S and the sulfanes, S(n)H(2), n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH(- )to H(2)S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S(8 )with SH(- )to produce the polysulfides, S(n)H(-), n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S(6 )species

    Fenites associated with carbonatite complexes : a review

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Carbonatites and alkaline-silicate rocks are the most important sources of rare earth elements (REE) and niobium (Nb), both of which are metals imperative to technological advancement and associated with high risks of supply interruption. Cooling and crystallizing carbonatitic and alkaline melts expel multiple pulses of alkali-rich aqueous fluids which metasomatize the surrounding country rocks, forming fenites during a process called fenitization. These alkalis and volatiles are original constituents of the magma that are not recorded in the carbonatite rock, and therefore fenites should not be dismissed during the description of a carbonatite system. This paper reviews the existing literature, focusing on 17 worldwide carbonatite complexes whose attributes are used to discuss the main features and processes of fenitization. Although many attempts have been made in the literature to categorize and name fenites, it is recommended that the IUGS metamorphic nomenclature be used to describe predominant mineralogy and textures. Complexing anions greatly enhance the solubility of REE and Nb in these fenitizing fluids, mobilizing them into the surrounding country rock, and precipitating REE- and Nb-enriched micro-mineral assemblages. As such, fenites have significant potential to be used as an exploration tool to find mineralized intrusions in a similar way alteration patterns are used in other ore systems, such as porphyry copper deposits. Strong trends have been identified between the presence of more complex veining textures, mineralogy and brecciation in fenites with intermediate stage Nb-enriched and later stage REE enriched magmas. However, compiling this evidence has also highlighted large gaps in the literature relating to fenitization. These need to be addressed before fenite can be used as a comprehensive and effective exploration tool.This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 689909

    The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits

    Get PDF
    Carbonate-bearing fluorapatite rocks occur at over 30 globally distributed carbonatite complexes and represent a substantial potential supply of phosphorus for the fertiliser industry. However, the process(es) involved in forming carbonate-bearing fluorapatite at some carbonatites remain equivocal, with both hydrothermal and weathering mechanisms inferred. In this contribution, we compare the paragenesis and trace element contents of carbonate-bearing fluorapatite rocks from the Kovdor, Sokli, Bukusu, CatalĂŁo I and Glenover carbonatites in order to further understand their origin, as well as to comment upon the concentration of elements that may be deleterious to fertiliser production. The paragenesis of apatite from each deposit is broadly equivalent, comprising residual magmatic grains overgrown by several different stages of carbonate-bearing fluorapatite. The first forms epitactic overgrowths on residual magmatic grains, followed by the formation of massive apatite which, in turn, is cross-cut by late euhedral and colloform apatite generations. Compositionally, the paragenetic sequence corresponds to a substantial decrease in the concentration of rare earth elements (REE), Sr, Na and Th, with an increase in U and Cd. The carbonate-bearing fluorapatite exhibits a negative Ce anomaly, attributed to oxic conditions in a surficial environment and, in combination with the textural and compositional commonality, supports a weathering origin for these rocks. Carbonate-bearing fluorapatite has Th contents which are several orders of magnitude lower than magmatic apatite grains, potentially making such apatite a more environmentally attractive feedstock for the fertiliser industry. Uranium and cadmium contents are higher in carbonate-bearing fluorapatite than magmatic carbonatite apatite, but are much lower than most marine phosphorites

    REE Incorporation into Calcite Individual Crystals as One Time Spike Addition

    No full text
    Experiments on the incorporation of trace elements into calcite were performed, and rare earth elements (REE) were used to mark the growth zones of individual crystals. Experiments were conducted at different pH (7.7 to 8.8) and temperatures (2 °C to 24.6 °C) in NH4Cl + CaCl2 solutions, where REE were rapidly consumed by growing calcite. LA-ICP-MS line-scans yielded the distribution of (REE/Ca)calcite within individual crystals in a manner consistent with the addition of REE into fluid. A sharp decrease of (REE/Ca)calcite toward the crystal edge suggests the fast depletion of (REE/Ca)fluid due to strong REE consumption by growing calcite. An attempt was made to estimate the lower limit of the partition coefficients between calcite and fluid using selected REE/Ca data within individual calcite crystals and the amount of REE added into fluid
    • …
    corecore