198 research outputs found

    Anisotropy in high-frequency broadband acoustic backscattering in the presence of turbulent microstructure and zooplankton

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 132 (2012): 670-679, doi:10.1121/1.4730904.High-frequency broadband (120–600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50 kHz to 2 MHz could help improve identification of the dominant sources of backscattering anisotropy

    Depth-dependent target strengths of gadoids by the boundary-element method

    Get PDF
    Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 3136-3146, doi:10.1121/1.1619982.The depth dependence of fish target strength has mostly eluded experimental investigation because of the need to distinguish it from depth-dependent behavioral effects, which may change the orientation distribution. The boundary-element method (BEM) offers an avenue of approach. Based on detailed morphometric data on 15 gadoid swimbladders, the BEM has been exercised to determine how the orientation dependence of target strength changes with pressure under the assumption that the fish swimbladder remains constant in shape and volume. The backscattering cross section has been computed at a nominal frequency of 38 kHz as a function of orientation for each of three pressures: 1, 11, and 51 atm. Increased variability in target strength and more abundant and stronger resonances are both observed with increasing depth. The respective backscattering cross sections have been averaged with respect to each of four normal distributions of tilt angle, and the corresponding target strengths have been regressed on the logarithm of fish length. The tilt-angle-averaged backscattering cross sections at the highest pressure have also been averaged with respect to frequency over a 2-kHz band for representative conditions of insonification. For all averaging methods, the mean target strength changes only slightly with depth.This work began with sponsorship by the European Commission through its RTD-program, Contract No. MAS3-CT95-0031 (BASS), and was completed with support by the Office of Naval Research, Contract No. N000140310368

    Association of Markers of Inflammation, the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging

    Get PDF
    Under embargo until: 2022-06-12Background Inflammation is a key feature of aging. We aimed to (i) investigate the association of 34 blood markers potentially involved in inflammatory processes with age and mortality and (ii) develop a signature of “inflammaging.” Methods Thirty-four blood markers relating to inflammation, B vitamin status, and the kynurenine pathway were measured in 976 participants in the Melbourne Collaborative Cohort Study at baseline (median age = 59 years) and follow-up (median age = 70 years). Associations with age and mortality were assessed using linear and Cox regression, respectively. A parsimonious signature of inflammaging was developed and its association with mortality was compared with 2 marker scores calculated across all markers associated with age and mortality, respectively. Results The majority of markers (30/34) were associated with age, with stronger associations observed for neopterin, cystatin C, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), several markers of the kynurenine pathway and derived indices KTR (kynurenine/tryptophan ratio), PAr index (ratio of 4-pyridoxic acid and the sum of pyridoxal 5′-phosphate and pyridoxal), and HK:XA (3-hydroxykynurenine/xanthurenic acid ratio). Many markers (17/34) showed an association with mortality, in particular IL-6, neopterin, C-reactive protein, quinolinic acid, PAr index, and KTR. The inflammaging signature included 10 markers and was strongly associated with mortality (hazard ratio [HR] per SD = 1.40, 95% CI: 1.24–1.57, p = 2 × 10−8), similar to scores based on all age-associated (HR = 1.38, 95% CI: 1.23–1.55, p = 4 × 10−8) and mortality-associated markers (HR = 1.43, 95% CI: 1.28–1.60, p = 1 × 10−10), respectively. Strong evidence of replication of the inflammaging signature association with mortality was found in the Hordaland Health Study. Conclusion Our study highlights the key role of the kynurenine pathway and vitamin B6 catabolism in aging, along with other well-established inflammation-related markers. A signature of inflammaging based on 10 markers was strongly associated with mortality.acceptedVersio

    Vitamin B6 catabolism and lung cancer risk:Results from the Lung Cancer Cohort Consortium (LC3)

    Get PDF
    Background Increased vitamin B6 catabolism related to inflammation, as measured by the PAr index (the ratio of 4-pyridoxic acid over the sum of pyridoxal and pyridoxal-5'-phosphate), has been positively associated with lung cancer risk in two prospective European studies. However, the extent to which this association translates to more diverse populations is not known. Materials and methods For this study, we included 5323 incident lung cancer cases and 5323 controls individually matched by age, sex, and smoking status within each of 20 prospective cohorts from the Lung Cancer Cohort Consortium. Cohort-specific odds ratios (ORs) and 95% confidence intervals (CIs) for the association between PAr and lung cancer risk were calculated using conditional logistic regression and pooled using random-effects models. Results PAr was positively associated with lung cancer risk in a dose-response fashion. Comparing the fourth versus first quartiles of PAr resulted in an OR of 1.38 (95% CI: 1.19-1.59) for overall lung cancer risk. The association between PAr and lung cancer risk was most prominent in former smokers (OR: 1.69, 95% CI: 1.36-2.10), men (OR: 1.60, 95% CI: 1.28-2.00), and for cancers diagnosed within 3 years of blood draw (OR: 1.73, 95% CI: 1.34-2.23). Conclusion Based on pre-diagnostic data from 20 cohorts across 4 continents, this study confirms that increased vitamin B6 catabolism related to inflammation and immune activation is associated with a higher risk of developing lung cancer. Moreover, PAr may be a pre-diagnostic marker of lung cancer rather than a causal factor

    A comparison of complementary measures of vitamin B6 status, function, and metabolism in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

    Get PDF
    Background: Vitamin B6 insufficiency has been linked to increased risk of cancer and other chronic diseases. The circulating concentration of pyridoxal 5'-phosphate (PLP) is a commonly used measure of vitamin B6 status. Ratios of substrates indicating PLP coenzymatic function and metabolism may be useful complementary measures to further explore the role of vitamin B6 in health. Objectives: We explored the sensitivity of 5 outcomes, namely PLP concentration, homocysteine:cysteine (Hcy:Cys), cystathionine:cysteine (Cysta:Cys), the 3´-hydroxykynurenine ratio (HKr), and the 4-pyridoxic acid ratio (PAr) to vitamin B6 intake as well as personal and lifestyle characteristics. Medthods: Dietary intake and biomarker data were collected from participants from 3 nested case-control studies within the European Prospective Investigation into Cancer and Nutrition (EPIC). Bayesian regression models assessed the associations of the 5 biomarker outcomes with vitamin B6 intake and personal and lifestyle covariates. Analogous models examined the relations of Hcy:Cys, Cysta:Cys, and HKr with PLP. Results: In total, 4608 participants were included in the analyses. Vitamin B6 intake was most strongly associated with PLP, moderately associated with Hcy:Cys, Cysta:Cys, and HKr, and not associated with PAr (fold change in marker given a doubling of vitamin B6 intake: PLP 1.60 [95% credible interval (CrI): 1.50, 1.71]; Hcy:Cys 0.87 [95% CrI: 0.84, 0.90]; Cysta:Cys 0.89 [95% CrI: 0.84, 0.94]; HKr 0.88 [95% CrI: 0.85, 0.91]; PAr 1.00 [95% CrI: 0.95, 1.05]). PAr was most sensitive to age, and HKr was least sensitive to BMI and alcohol intake. Sex and menopause status were strongly associated with all 5 markers. Conclusions: We found that 5 different markers, capturing different aspects of vitamin B6-related biological processes, varied in their associations with vitamin B6 intake and personal and lifestyle predictors

    Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns

    Get PDF
    Folate is vital for fetal development. Periconceptional folic acid supplementation and food fortification are recommended to prevent neural tube defects. Mechanisms whereby periconceptional folate influences normal development and disease are poorly understood: epigenetics may be involved. We examine the association between maternal plasma folate during pregnancy and epigenome-wide DNA methylation using Illumina" s HumanMethyl450 Beadchip in 1,988 newborns from two European cohorts. Here we report the combined covariate-adjusted results using meta-analysis and employ pathway and gene expression analyses. Four-hundred forty-three CpGs (320 genes) are significantly associated with maternal plasma folate levels during pregnancy (false discovery rate 5%); 48 are significant after Bonferroni correction. Most genes are not known for folate biology, including APC2, GRM8, SLC16A12, OPCML, PRPH, LHX1, KLK4 and PRSS21. Some relate to birth defects other than neural tube defects, neurological functions or varied aspects of embryonic development. These findings may inform how maternal folate impacts the developing epigenome and health outcomes in offspring
    corecore