146 research outputs found

    Vasopressin-independent renal urinary concentration: Increased rBSC1 and enhanced countercurrent multiplication

    Get PDF
    Vasopressin-independent renal urinary concentration: Increased rBSC1 and enhanced countercurrent multiplication.BackgroundA close association between the expression of the sodium transporter, rat bumetanide sensitive cotransporter (rBSC), in thick ascending limb of Henle and urinary concentration has been reported. However, direct evidence for this association and the mechanism of rBSC1 expression are still to be elucidated.MethodsBrattleboro (BB) rats weighing approximately 200g were dehydrated by water restriction for 4 hours, which induced around a 5% body weight reduction. Although plasma arginine vasopressin (AVP) was undetectable even after the water restriction, BB rats concentrated urine from 182 ± 23 (mean ± SD) at baseline to 404 ± 65 mOsm/kg · H2O.ResultsUrinary volume was reduced from 5.8 ± 1.8 to 1.4 ± 0.6mL/h. This treatment significantly increased sodium and urea accumulation in the renal medulla and reduced urinary sodium excretion. rBSC1 signals for both mRNA and protein were increased in dehydrated rats, although aquaporin type 2 (AQP2) expression was not enhanced in dehydrated BB rats. Subcutaneous infusion of desmopressin acetate (DDAVP) intensified rBSC1 signals of BB rats more than those in dehydrated condition.ConclusionDehydration increased rBSC1 expression and enhanced countercurrent multiplication even in AVP deficiency. These results supply strong evidence for the association between rBSC1 expression and urinary concentration, and indicate the presence of an AVP-independent mechanism for urine concentration

    Reverse pharmacological effect of loop diuretics and altered rBSC1 expression in rats with lithium nephropathy

    Get PDF
    Reverse pharmacological effect of loop diuretics and altered rBSC1 expression in rats with lithium nephropathy.BackgroundRenal urinary concentration is associated with enhanced expression of rBSC1, a rat sodium cotransporter, in the thick ascending limb of Henle. Increased expression of rBSC1 was reported recently in nephrogenic diabetes insipidus induced by lithium chloride (Li nephropathy). However, the pathophysiological implication of altered rBSC1 expression has not yet been investigated.MethodsLi nephropathy was induced in rats by an oral administration of 40 mmol lithium/kg dry food. In rats with reduced urinary osmolality to less than 300 mOsm/kg H2O, we examined the expression of rBSC1 mRNA and protein, plasma arginine vasopressin (AVP) and RNA expression of kidney-specific water channel, aquaporin-2 (AQP2), of collecting ducts. Rats with Li nephropathy were treated with furosemide (3 mg/kg body weight), which blocks the activity of rBSC1, and changes in urine concentration, plasma AVP, medullary accumulation of Li ions, and apical AQP2 expression were determined.ResultsRats with Li nephropathy showed increased rBSC1 RNA and protein expression and reduced AQP2 RNA. In these rats, furosemide, which induces dilution of urine and polyuria in normal rats, resulted in a progressive and significant rise in urine osmolality from 167 ± 11 (mean ± SD) at baseline to 450 ± 45 mOsm/kg H2O at three hours after administration, and significant oliguria. In the same rats, plasma AVP decreased significantly from 5.7 to 3.0 pg/mL. In addition, recovery of apical AQP2 expression was noted in a proportion of epithelial cells of the collecting ducts. Although Li+ in the renal medulla was slightly lower in rats with Li nephropathy treated with furosemide, statistical significance was not achieved.ConclusionsOur results suggest that dehydration or high plasma AVP results in an enhanced rBSC1 expression in Li nephropathy, and that rBSC1 expression is closely associated with the adverse effects of Li ions on collecting duct function

    Atomic layer-deposited Si-nitride/SiO2 stack gate dielectrics for future high-speed DRAM with enhanced reliability

    Get PDF
    Atomic layer-deposited (ALD) Si-nitride/SiO"2 stack gate dielectrics were applied to high-performance transistors for future scaled DRAMs. The stack gate dielectrics of the peripheral pMOS transistors excellently suppress boron penetration. ALD stack gate dielectrics exhibit only slightly worse negative-bias temperature instability (NBTI) characteristics than pure gate oxide. Enhanced reliability in NBTI was achieved compared with that of plasma-nitrided gate SiO"2. Memory-cell (MC) nMOS transistors with ALD stack gate dielectrics show slightly smaller junction leakage than those with plasma-nitrided gate SiO"2 in a high-drain-voltage region, and have identical junction leakage characteristics to transistors with pure gate oxide. MCs having transistors with ALD stack gate dielectrics and those with pure gate oxide have the identical retention-time distribution. Taking the identical hole mobility for the transistors with ALD stack gate dielectrics to that for the transistors with pure gate oxide both before and after hot carrier injection (previously reported) into account, the ALD stack dielectrics are a promising candidate for the gate dielectrics of future high-speed, reliable DRAMs

    Chemoattractant Receptor Homologous to the T Helper 2 Cell (CRTH2) Is Not Expressed in Human Amniocytes and Myocytes

    Get PDF
    BACKGROUND: 15-deoxy-Δ 12,14- Prostaglandin J2 (15dPGJ2) inhibits Nuclear factor kappa B (NF-κB) in human myocytes and amniocytes and delays inflammation induced preterm labour in the mouse. 15dPGJ2 is a ligand for the Chemoattractant Receptor Homologous to the T helper 2 cell (CRTH2), a G protein-coupled receptor, present on a subset of T helper 2 (Th2) cells, eosinophils and basophils. It is the second receptor for Prostaglandin D2, whose activation leads to chemotaxis and the production of Th2-type interleukins. The cellular distribution of CRTH2 in non-immune cells has not been extensively researched, and its identification at the protein level has been limited by the lack of specific antibodies. In this study we explored the possibility that CRTH2 plays a role in 15dPGJ2-mediated inhibition of NF-κB and would therefore represent a novel small molecule therapeutic target for the prevention of inflammation induced preterm labour. METHODS: The effect of a small molecule CRTH2 agonist on NF-κB activity in human cultured amniocytes and myocytes was assessed by detection of p65 and phospho-p65 by immunoblot. Endogenous CRTH2 expression in amniocytes, myocytes and peripheral blood mononuclear cells (PBMCs) was examined by PCR, western analysis and flow cytometry, with amniocytes and myocytes transfected with CRTH2 acting as a positive control in flow cytometry studies. RESULTS: The CRTH2 agonist had no effect on NF-κB activity in amniocytes and myocytes. Although CRTH2 mRNA was detected in amniocytes and myocytes, CRTH2 was not detectable at the protein level, as demonstrated by western analysis and flow cytometry. 15dPGJ2 inhibited phospho-65 in PBMC'S, however the CRTH2 antagonist was not able to attenuate this effect. In conclusion, CRTH2 is not expressed on human amniocytes or myocytes and plays no role in the mechanism of 15dPGJ2-mediated inhibition of NF-κB

    Differential actions of glycodelin-A on Th-1 and Th-2 cells: A paracrine mechanism that could produce the Th-2 dominant environment during pregnancy

    Get PDF
    Background: The maternalfetal interface has a unique immunological response towards the implanting placenta. It is generally accepted that a T-helper type-2 (Th-2) cytokine prevailing environment is important in pregnancy. The proportion of Th-2 cells in the peripheral blood and decidua is significantly higher in pregnant women in the first trimester than in non-pregnant women. Glycodelin-A (GdA) is a major endocrine-regulated decidual glycoprotein thought to be related to fetomaternal defence. Yet the relationship between its immunoregulatory activities and the shift towards Th-2 cytokine profile during pregnancy is unclear. Methods GdA was immunoaffinity purified from human amniotic fluid. T-helper, T-helper type-1 (Th-1) and Th-2 cells were isolated from the peripheral blood. The viability of these cells was studied by XTT assay. Immunophenotyping of CD4/CD294, cell death and GdA-binding were determined by flow cytometry. The mRNA expression, surface expression and secretion of Fas/Fas ligand (FasL) were determined by quantitative polymerase chain reaction, flow cytometry and ELISA, respectively. The activities of caspase-3, -8 and -9 were measured. The phosphorylation of extracellular signal-regulated kinases (ERK), p38 and, c-Jun N-terminal kinase was determined by western blotting. Results Although GdA bound to both Th-1 and Th-2 cells, it had differential actions on the two cell-types. GdA induced cell death of the Th-1 cells but not the Th-2 cells. The cell death was mediated through activation of caspase -3, -8 and -9 activities. GdA up-regulated the expression of Fas and inhibited ERK activation in the Th-1 cells, which might enhance the vulnerability of the cells to cell death caused by a trophoblast-derived FasL. Conclusions The data suggest that GdA could be an endometrial factor that contributes to the Th-2/Th-1 shift during pregnancy. © 2011 The Author.postprin

    Comprehensive expression analysis of prostanoid enzymes and receptors in the human endometrium across the menstrual cycle

    Get PDF
    Prostanoids are well-described primary mediators of inflammatory processes and are essential for the normal physiological function of the female reproductive system. The aim of this study was to determine the temporal expression of the prostanoid biosynthetic enzymes (PTGS1, PTGS2, PTGES, PTGES2, PTGES3, AKR1B1, AKR1C3, CBR1, HPGDS, PTGDS, PTGIS, TBXAS1 and HPGD) and the prostanoid receptors (PTGER1, PTGER2, PTGER3, PTGER4, PTGFR, PTGDR, GPR44, PTGIR and TBXA2R) in the human endometrium throughout the menstrual cycle. The analysis identified PTGFR to have a distinct expression profile compared with other components of the prostanoid system, as expression is maximal during the proliferative phase. Immunohistochemical analysis for PTGER1 suggests a dual function for this receptor depending on its temporal (proliferative versus secretory) and spatial (nuclear versus cell membrane) expression. The expression profiles of the PGF2α synthases identified AKR1B1 and CBR1 as the likely regulators of PGF2α production during the menstrual phase. Immunohistochemical analysis for AKR1B1, CBR1 and AKR1C3 suggest expression to be in the glandular epithelium and vasculature. This study represents the first comprehensive analysis of the components of prostanoid biosynthetic and signalling pathway in the human endometrium. The expression profiles described have the potential to identify specific prostanoid components that may be dysregulated in inflammatory-associated disorders of the endometrium
    corecore