29 research outputs found

    MadGraph/MadEvent v4: The New Web Generation

    Get PDF
    We present the latest developments of the MadGraph/MadEvent Monte Carlo event generator and several applications to hadron collider physics. In the current version events at the parton, hadron and detector level can be generated directly from a web interface, for arbitrary processes in the Standard Model and in several physics scenarios beyond it (HEFT, MSSM, 2HDM). The most important additions are: a new framework for implementing user-defined new physics models; a standalone running mode for creating and testing matrix elements; generation of events corresponding to different processes, such as signal(s) and backgrounds, in the same run; two platforms for data analysis, where events are accessible at the parton, hadron and detector level; and the generation of inclusive multi-jet samples by combining parton-level events with parton showers. To illustrate the new capabilities of the package some applications to hadron collider physics are presented: 1) Higgs search in pp \to H \to W^+W^-: signal and backgrounds. 2) Higgs CP properties: pp \to H jj$in the HEFT. 3) Spin of a new resonance from lepton angular distributions. 4) Single-top and Higgs associated production in a generic 2HDM. 5) Comparison of strong SUSY pair production at the SPS points. 6) Inclusive W+jets matched samples: comparison with the Tevatron data.Comment: 38 pages, 15 figure

    Unconventional phenomenology of a minimal two-Higgs-doublet model

    Full text link
    Two-Higgs-doublet models (2HDM) are simple extensions of the Standard Model (SM) where the scalar sector is enlarged by adding a weak doublet. As a result, the Higgs potential depends in general on several free parameters which have to be carefully chosen to give predictions consistent with the current precision data. We consider a 2HDM invariant under a twisted custodial symmetry and depending only on three extra parameters beyond the SM ones. This model naturally features an inverted mass spectrum with a light pseudoscalar state and a heavy SM-like Higgs boson. We thoroughly analyze direct and indirect constraints and present a few unconventional though promising signatures at the LHC.Comment: 37 pages, 20 figure

    MadGraph 5 : Going Beyond

    Get PDF
    MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.Comment: 37 pages, 5 figures, 7 table

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    A two-Higgs-doublet model : from twisted theory to LHC phenomenology

    No full text
    At the dawn of the Large Hadron Collider era, the Brout-Englert-Higgs mechanism remains the most appealing theoretical explanation of the electroweak symmetry breaking, despite the fact that the associated fundamental scalar boson has escaped any direct detection attempt. In this thesis, we consider a particular extension of the minimal Brout-Englert-Higgs scalar sector implemented in the Standard Model of strong and electroweak interactions. This extension, which is a specific, "twisted", realisation of the generic two-Higgs-doublet model, is motivated by a relative phase in the definition of the phenomenologically successful CP and custodial symmetries. Considering extensively various theoretical, indirect and direct constraints, this model appears as a viable alternative to more conventional scenarios like supersymmetric models, and gives grounds to largely unexplored possibilities of exotic scalar signatures at present and future collider experiments.(PHYS 3) -- UCL, 200

    A comprehensive approach to new physics simulations

    Get PDF
    We describe a framework to develop, implement and validate any perturbative Lagrangian-based particle physics model for further theoretical, phenomenological and experimental studies. The starting point is FeynRules, a Mathematica package that allows to generate Feynman rules for any Lagrangian and then, through dedicated interfaces, automatically pass the corresponding relevant information to any supported Monte Carlo event generator. We prove the power, robustness and flexibility of this approach by presenting a few examples of new physics models (the Hidden Abelian Higgs Model, the general Two-Higgs-Doublet Model, the most general Minimal Supersymmetric Standard Model, the Minimal Higgsless Model, Universal and Large Extra Dimensions, and QCD-inspired effective Lagrangians) and their implementation/validation in FeynArts/FormCalc, CalcHep, MadGraph/MadEvent, and Sherpa
    corecore