557 research outputs found

    Symmetric Operation of the Resonant Exchange Qubit

    Full text link
    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated RF pulses. At the resulting three-dimensional sweet spot the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between RF drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to n = 32 {\pi} pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of partial sweet spots in the operation and long-distance coupling of triple-dot qubits.Comment: 6 pages, 5 figure

    Negative spin exchange in a multielectron quantum dot

    Full text link
    By operating a one-electron quantum dot (fabricated between a multielectron dot and a one-electron reference dot) as a spectroscopic probe, we study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation number. We observe that the multielectron groundstate transitions from spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of non-trivial multielectron spin exchange correlations.Comment: 8 pages, including 4 main figures and 2 supplementary figurure

    Noise suppression using symmetric exchange gates in spin qubits

    Full text link
    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.Comment: 5 pages main text (4 figures) plus 5 pages supplemental information (3 figures

    Fast spin exchange between two distant quantum dots

    Get PDF
    The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamental electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5 supplementary figure

    Spectrum of the Nuclear Environment for GaAs Spin Qubits

    Full text link
    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over six orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f21/f^2 for frequency f ⁣ ⁣1f \! \gtrsim \! 1 Hz. Increasing the applied magnetic field from 0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which decreases spectral content in the 1/f21/f^2 region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime ( ⁣16\lesssim \! 16 π\pi-pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime ( ⁣32\gtrsim \! 32 π\pi-pulses), where longitudinal Overhauser fluctuations with a 1/f1/f spectrum dominate.Comment: 6 pages, 4 figures, 8 pages of supplementary material, 5 supplementary figure

    Abundances of Baade's Window Giants from Keck/HIRES Spectra: II. The Alpha- and Light Odd Elements

    Full text link
    We report detailed chemical abundance analysis of 27 RGB stars towards the Galactic bulge in Baade's Window for elements produced by massive stars: O, Na, Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge relative to the disk, especially Mg, indicating that the bulge is enhanced in Type~II supernova ejecta and most likely formed more rapidly than the disk. We attribute a rapid decline of [O/Fe] to metallicity-dependent yields of oxygen in massive stars, perhaps connected to the Wolf-Reyet phenomenon. he explosive nucleosynthesis alphas, Si, Ca and Ti, possess identical trends with [Fe/H], consistent with their putative common origin. We note that different behaviors of hydrostatic and explosive alpha elements can be seen in the stellar abundances of stars in Local Group dwarf galaxies. We also attribute the decline of Si,Ca and Ti relative to Mg, to metallicity- dependent yields for the explosive alpha elements from Type~II supernovae. The starkly smaller scatter of [/Fe] with [Fe/H] in the bulge, as compared to the halo, is consistent with expected efficient mixing for the bulge. The metal-poor bulge [/Fe] ratios are higher than ~80% of the halo. If the bulge formed from halo gas, the event occured before ~80% of the present-day halo was formed. The lack of overlap between the thick and thin disk composition with the bulge does not support the idea that the bulge was built by a thickening of the disk driven by the bar. The trend of [Al/Fe] is very sensitive to the chemical evolution environment. A comparison of the bulge, disk and Sgr dSph galaxy shows a range of ~0.7 dex in [Al/Fe] at a given [Fe/H], presumably due to a range of Type~II/Type~Ia supernova ratios in these systems.Comment: 51 pages, 6 tables, 27 figures, submitte

    Flinders Island spotted fever rickettsioses caused by "marmionii" strain of rickettsia honei, Eastern Australia

    Get PDF
    Australia has 4 rickettsial diseases: murine typhus, Queensland tick typhus, Flinders Island spotted fever, and scrub typhus. We describe 7 cases of a rickettsiosis with an acute onset and symptoms of fever (100%), headache (71%), arthralgia (43%), myalgia (43%), cough (43%), maculopapular/petechial rash (43%), nausea (29%), pharyngitis (29%), lymphadenopathy (29%), and eschar (29%). Cases were most prevalent in autumn and from eastern Australia, including Queensland, Tasmania, and South Australia. One patient had a history of tick bite (Haemaphysalis novaeguineae). An isolate shared 99.2%, 99.8%, 99.8%, 99.9%, and 100% homology with the 17 kDa, ompA, gltA, 16S rRNA, and Sca4 genes, respectively, of Rickettsia honei. This Australian rickettsiosis has similar symptoms to Flinders Island spotted fever, and the strain is genetically related to R. honei. It has been designated the "marmionii" strain of R. honei, in honor of Australian physician and scientist Barrie Marmion

    Diffractive point sets with entropy

    Full text link
    After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. We show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th birthday; final version, some minor addition

    Far Ultraviolet Spectra of B Stars near the Ecliptic

    Get PDF
    Spectra of B stars in the wavelength range of 911-1100 A have been obtained with the EURD spectrograph onboard the Spanish satellite MINISAT-01 with ~5 A spectral resolution. IUE spectra of the same stars have been used to normalize Kurucz models to the distance, reddening and spectral type of the corresponding star. The comparison of 8 main-sequence stars studied in detail (alpha Vir, epsilon Tau, lambda Tau, tau Tau, alpha Leo, zeta Lib, theta Oph, and sigma Sgr) shows agreement with Kurucz models, but observed fluxes are 10-40% higher than the models in most cases. The difference in flux between observations and models is higher in the wavelength range between Lyman alpha and Lyman beta. We suggest that Kurucz models underestimate the FUV flux of main-sequence B stars between these two Lyman lines. Computation of flux distributions of line-blanketed model atmospheres including non-LTE effects suggests that this flux underestimate could be due to departures from LTE, although other causes cannot be ruled out. We found the common assumption of solar metallicity for young disk stars should be made with care, since small deviations can have a significant impact on FUV model fluxes. Two peculiar stars (rho Leo and epsilon Aqr), and two emission line stars (epsilon Cap and pi Aqr) were also studied. Of these, only epsilon Aqr has a flux in agreement with the models. The rest have strong variability in the IUE range and/or uncertain reddening, which makes the comparison with models difficult.Comment: 25 pages, 6 figures, to be published in The Astrophysical Journa

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore