We report detailed chemical abundance analysis of 27 RGB stars towards the
Galactic bulge in Baade's Window for elements produced by massive stars: O, Na,
Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge
relative to the disk, especially Mg, indicating that the bulge is enhanced in
Type~II supernova ejecta and most likely formed more rapidly than the disk. We
attribute a rapid decline of [O/Fe] to metallicity-dependent yields of oxygen
in massive stars, perhaps connected to the Wolf-Reyet phenomenon. he explosive
nucleosynthesis alphas, Si, Ca and Ti, possess identical trends with [Fe/H],
consistent with their putative common origin. We note that different behaviors
of hydrostatic and explosive alpha elements can be seen in the stellar
abundances of stars in Local Group dwarf galaxies. We also attribute the
decline of Si,Ca and Ti relative to Mg, to metallicity- dependent yields for
the explosive alpha elements from Type~II supernovae. The starkly smaller
scatter of [/Fe] with [Fe/H] in the bulge, as compared to the halo, is
consistent with expected efficient mixing for the bulge. The metal-poor bulge
[/Fe] ratios are higher than ~80% of the halo. If the bulge formed from
halo gas, the event occured before ~80% of the present-day halo was formed. The
lack of overlap between the thick and thin disk composition with the bulge does
not support the idea that the bulge was built by a thickening of the disk
driven by the bar. The trend of [Al/Fe] is very sensitive to the chemical
evolution environment. A comparison of the bulge, disk and Sgr dSph galaxy
shows a range of ~0.7 dex in [Al/Fe] at a given [Fe/H], presumably due to a
range of Type~II/Type~Ia supernova ratios in these systems.Comment: 51 pages, 6 tables, 27 figures, submitte