26 research outputs found

    Magnetospheric transmission function to separate near earth primary and secondary cosmic rays

    Get PDF
    The main features of charged particles accessing the Earth magnetosphere have been studied by tracing their trajectories. The reconstruction code has allowed us to perform two simulations of Cosmic Rays (CRs) accessing the AMS detector, one for the 1998 data, and the other for the 2005 (at the moment, the IGRF data are available up to that year). The parameters of the external field model for 2005 have been estimated from the solar conditions in 1982 and 1984, two solar cycles before. The CRs have been assumed to be isotropically impinging on the AMS detector, flying at 400 km altitude with energies reproducing the AMS-01 observed spectrum. The computation of allowed and forbidden primary particle trajectories has enabled us the estimate of the Transmission Function in both periods. A comparison with the overall (primary and secondary) AMS-01 data provides by subtraction the determination of the secondary spectrum

    A NORMALIZATION PROCEDURE FOR CREME96 SPECTRA

    Get PDF
    CREME96 (Cosmic Ray Effects on Micro-Electronics) is a code for creating numerical models of the ionizing radiation environment in near Earth orbits [1]. This model is widely used in aerospace industry for evaluating how radiation affects spacecraft electronics. Package includes models of galactic cosmic rays (GCR), anomalous cosmic rays and solar energetic particles. Model of GCR in CREME96 is based on the semi-empirical model of Nymmik et. al. [2], which rates the solar-cycle variations to the observed time-history of the Wolf (sunspot) number. Model is available across web page interface (see the web page https://creme96.nrl.navy.mil/). Creme96 can be used as quick reference also for scientific study. For this reason we are interested to evaluate uncertainty of CREME96 model for proton spectra in near Earth environment. Authors quote a mean discrepancy of the GCR model with experimental data of ~ 25% [1]. We want to test, and possibly to improve, this accuracy comparing the model with the more recent measurements

    Multi-scale analysis of the Monoceros OB 1 star-forming region : I. The dense core population

    Get PDF
    Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a ̃10 × 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims: We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods: In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results: We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10 - 50 M☉) forms a massive ridge (≳150 M☉). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M☉) core, which presents a high column density (8 × 1022 cm-2). Conclusions: All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a similar to 10 x 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10 50 M-circle dot) forms a massive ridge (greater than or similar to 150 M-circle dot). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M-circle dot) core, which presents a high column density (8 x 10(22) cm(-2)). Conclusions. All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.Peer reviewe

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 μ\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 μ\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    Magnetic Fields in the Infrared Dark Cloud G34.43+0.24

    Get PDF
    We present the B-fields mapped in IRDC G34.43+0.24 using 850 mu m polarized dust emission observed with the POL-2 instrument at the James Clerk Maxwell telescope. We examine the magnetic field geometries and strengths in the northern, central, and southern regions of the filament. The overall field geometry is ordered and aligned closely perpendicular to the filament's main axis, particularly in regions containing the central clumps MM1 and MM2, whereas MM3 in the north has field orientations aligned with its major axis. The overall field orientations are uniform at large (POL-2 at 14 '' and SHARP at 10 '') to small scales (TADPOL at 2 ''.5 and SMA at 1 ''.5) in the MM1 and MM2 regions. SHARP/CSO observations in MM3 at 350 mu m from Tang et al. show a similar trend as seen in our POL-2 observations. TADPOL observations demonstrate a well-defined field geometry in MM1/MM2 consistent with MHD simulations of accreting filaments. We obtained a plane-of-sky magnetic field strength of 470 +/- 190 mu G, 100 +/- 40 mu G, and 60 +/- 34 mu G in the central, northern, and southern regions of G34, respectively, using the updated Davis-Chandrasekhar-Fermi relation. The estimated value of field strength, combined with column density and velocity dispersion values available in the literature, suggests G34 to be marginally critical with criticality parameter lambda values 0.8 +/- 0.4, 1.1 +/- 0.8, and 0.9 +/- 0.5 in the central, northern, and southern regions, respectively. The turbulent motions in G34 are sub-AlfvEnic with Alfvenic Mach numbers of 0.34 +/- 0.13, 0.53 +/- 0.30, and 0.49 +/- 0.26 in the three regions. The observed aligned B-fields in G34.43+0.24 are consistent with theoretical models suggesting that B-fields play an important role in guiding the contraction of the cloud driven by gravity.Peer reviewe

    PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars

    Get PDF
    22 pags., 8 figs., 1 tab.Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter-and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.Support for JWST-ERS program ID 1288 was provided through grants from the STScI under NASA contract NAS5-03127 to STScI (K.G., D.V.D.P., M.R.), Univ. of Maryland (M.W., M.P.), Univ. of Michigan (E.B., F.A.), and Univ. of Toledo (T.S.-Y.L.). O.B. and E.H. are supported by the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES, and through APR grants 6315 and 6410 provided by CNES. E. P. and J.C. acknowledge support from the National Science and Engineering Council of Canada (NSERC) Discovery Grant program (RGPIN-2020-06434 and RGPIN-2021-04197 respectively). E.P. acknowledges support from a Western Strategic Support Accelerator Grant (ROLA ID 0000050636). J.R.G. and S.C. thank the Spanish MCINN for funding support under grant PID2019-106110GB-I00. Work by M.R. and Y.O. is carried out within the Collaborative Research Centre 956, subproject C1, funded by the Deutsche Forschungsgemeinschaft (DFG)—project ID 184018867. T.O. acknowledges support from JSPS Bilateral Program, grant No. 120219939. M.P. and M.W. acknowledge support from NASA Astrophysics Data Analysis Program award #80NSSC19K0573. C.B. is grateful for an appointment at NASA Ames Research Center through the San José State University Research Foundation (NNX17AJ88A) and acknowledges support from the Internal Scientist Funding Model (ISFM) Directed Work Package at NASA Ames titled: “Laboratory Astrophysics—The NASA Ames PAH IR Spectroscopic Database.”Peer reviewe

    Dust polarization studies on MHD simulations of molecular clouds : comparison of methods for the relative-orientation analysis

    Get PDF
    Context. The all-sky survey from the Planck space telescope has revealed that thermal emission from Galactic dust is polarized on scales ranging from the whole sky down to the inner regions of molecular clouds. Polarized dust emission can therefore be used as a probe for magnetic fields on different scales. In particular, the analysis of the relative orientation between the density structures and the magnetic field projected on the plane of the sky can provide information on the role of magnetic fields in shaping the structure of molecular clouds where star formation takes place.Aims. The orientation of the magnetic field with respect to the density structures has been investigated using different methods. The goal of this paper is to explicitly compare two of these: the Rolling Hough Transform (RHT) and the gradient technique (GRAD).Methods. We generated synthetic surface brightness maps at 353 GHz (850 mu m) via magnetohydrodynamic simulations. We applied RHT and GRAD to two morphologically different regions identified in our maps. Region 1 is dominated by a dense and thick filamentary structure with some branches, while Region 2 includes a thinner filament with denser knots immersed in a more tenuous medium. Both methods derive the relative orientation between the magnetic field and the density structures, to which we applied two statistics, the histogram of relative orientation and the projected Rayleigh statistic, to quantify the variations of the relative orientation as a function of column density.Results. Both methods find areas with significant signal, and these areas are substantially different. In terms of relative orientations, in all our considered cases the predominant orientation of the density structures is perpendicular to the direction of the magnetic field. When the methods are applied to the same selected areas the results are consistent with each other in Region 2 but show some noticeable differences in Region 1. In Region 1, RHT globally finds the relative orientation becoming more perpendicular for increasing column density, while GRAD, applied at the same resolution as RHT, gives the opposite trend. These disparities are caused by the intrinsic differences in the methods and in the structures that they select.Conclusions. Our results indicate that the interpretation of the relative orientation between the magnetic field and density structures should take into account the specificity of the methods used to determine such orientation. The combined use of complementary techniques such as RHT and GRAD provides more complete information, which can be advantageously used to better understand the physical mechanisms operating in magnetized molecular clouds.Peer reviewe
    corecore