26 research outputs found

    Cap-Gly Proteins at Microtubule Plus Ends: Is EB1 Detyrosination Involved?

    Get PDF
    Localization of CAP-Gly proteins such as CLIP170 at microtubule+ends results from their dual interaction with α-tubulin and EB1 through their C-terminal amino acids −EEY. Detyrosination (cleavage of the terminal tyrosine) of α-tubulin by tubulin-carboxypeptidase abolishes CLIP170 binding. Can detyrosination affect EB1 and thus regulate the presence of CLIP170 at microtubule+ends as well? We developed specific antibodies to discriminate tyrosinated vs detyrosinated forms of EB1 and detected only tyrosinated EB1 in fibroblasts, astrocytes, and total brain tissue. Over-expressed EB1 was not detyrosinated in cells and chimeric EB1 with the eight C-terminal amino acids of α-tubulin was only barely detyrosinated. Our results indicate that detyrosination regulates CLIPs interaction with α-tubulin, but not with EB1. They highlight the specificity of carboxypeptidase toward tubulin

    Juvenile zebrafish (Danio rerio) are able to recover from lordosis

    No full text
    AbstractHaemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.</jats:p

    Juvenile zebrafish (Danio rerio) are able to recover from lordosis

    No full text
    Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed

    Advances in prostaglandin and thromboxane research

    Get PDF
    Farmers are the key actors of land-use change processes. It is thus essential to choose a suitable architecture for farmer behavior to model such processes. In this paper, we compared three models with different architectures to model the farmer behavior in the coastal areas of the Ben Tre province: (i) The first one is a probabilistic model that allows farmer to select the land-use pattern based on land change probability; (ii) The second model is based on multi-criteria decision making and takes into account the land suitability of the parcel and the farmer benefit; (iii) The third model used a BDI (Beliefs - Desires - Intentions) architecture. For each of these models, we have compared the difference between simulated data and real data by using the Fuzzy Kappa coefficient. The results show the suitability of the BDI architecture to build land-use change model and to support decision-making on land-use planning
    corecore