153 research outputs found

    Glass resistive plate chambers in the OPERA experiment

    Get PDF
    Abstract OPERA is an underground neutrino oscillation experiment to search for ν τ appearance from a pure ν μ beam produced at CERN. To flag the events due to the neutrino interactions with the rock surrounding the OPERA detector, a large VETO system, based on the use of Glass Resistive Plate Chambers (GRPC) has been realized. We describe the detectors, the tests performed before the installation in the underground laboratories and the monitor system for the water pollution in the GRPC gas mixture

    Polyphenolic Profile, Antioxidant and Antidiabetic Potential of Medlar (Mespilus germanica L.), Blackthorn (Prunus spinosa L.) and Common Hawthorn (Crataegus monogyna Jacq.) Fruit Extracts from Serbia

    Get PDF
    Plant-based food represents an excellent source of different nutrients and bioactive compounds, such as phenolics, carotenoids, vitamins, etc., with proven health benefits for humans. The content of selected phytochemicals, polyphenolic profile, and biological activity (antioxidant potential and α-glucosidase inhibitory activity) of fruit extracts of medlar (Mespilus germanica L.), blackthorn (Prunus spinosa L.), and common hawthorn (Crataegus monogyna Jacq.), the neglected Rosaceae species originated from Serbia were studied. Targeted UHPLC/(−)HESI–MS/MS quantitative analysis of phenolic compounds revealed pinocembrin only in medlar fruit extract, and it is the first report of this flavanone in medlar fruits. Total phenolic content did not differ between extracts, whereas significant differences were observed for the contents of total flavonoids, total phenolic acids, and total gallotannins. Monomeric anthocyanins and total anthocyanins were significantly higher in blackthorn compared to medlar and hawthorn fruit extracts (p < 0.05). DPPH· and ABTS·+ scavenging activities for examined fruits were modest compared to other natural antioxidants and BHT. The most potent inhibitory activity toward α-glucosidase expressed medlar and blackthorn extracts with IC50 values of 129.46 and 199.84 μg/mL, respectively, which was higher compared to the standard drug acarbose

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    First detection of VHE gamma-ray emission from TXS 1515-273, study of its X-ray variability and spectral energy distribution

    Get PDF
    We report here on the first multi-wavelength (MWL) campaign on the blazar TXS 1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma rays (VHE). Up until now, this blazar had not been the subject of any detailed MWL observations. It has a rather hard photon index at GeV energies and was considered a candidate extreme high-synchrotronpeaked source. MAGIC observations resulted in the first-time detection of the source in VHE with a statistical significance of 7.6σ\sigma. The average integral VHE flux of the source is 6 ±\pm 1% of the Crab nebula flux above 400 GeV. X-ray coverage was provided by Swift-XRT, XMMNewton, and NuSTAR. The long continuous X-ray observations were separated by \sim 9 h, both showing clear hour scale flares. In the XMM-Newton data, both the rise and decay timescales are longer in the soft X-ray than in the hard X-ray band, indicating the presence of a particle cooling regime. The X-ray variability timescales were used to constrain the size of the emission region and the strength of the magnetic field. The data allowed us to determine the synchrotron peak frequency and classify the source as a flaring high, but not extreme, synchrotron peaked object. Considering the constraints and variability patterns from the X-ray data, we model the broad-band spectral energy distribution. We applied a simple one-zone model, which could not reproduce the radio emission and the shape of the optical emission, and a two-component leptonic model with two interacting components, enabling us to reproduce the emission from radio to VHE band

    Study of the GeV to TeV morphology of the γ Cygni SNR (G 78.2+2.1) with MAGIC and Fermi-LAT: Evidence for cosmic ray escape

    Get PDF
    Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR. Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR. © 2023 EDP Sciences. All rights reserved

    Measurement of the Extragalactic Background Light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1

    Get PDF
    We present a measurement of the extragalactic background light (EBL) based on a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the redshift range z = 0.03 to 0.944, obtained by the MAGIC telescopes and Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning the ultraviolet, visible and infrared bands. Major contributors to the EBL are the light emitted by stars through the history of the universe, and the fraction of it which was absorbed by dust in galaxies and re-emitted at longer wavelengths. The EBL can be studied indirectly through its effect on very-high energy photons that are emitted by cosmic sources and absorbed via photon-photon interactions during their propagation across cosmological distances. We obtain estimates of the EBL density in good agreement with state-of-the-art models of the EBL production and evolution. The 1-sigma upper bounds, including systematic uncertainties, are between 13% and 23% above the nominal EBL density in the models. No anomaly in the expected transparency of the universe to gamma rays is observed in any range of optical depth.We also perform a wavelength-resolved EBL determination, which results in a hint of an excess of EBL in the 0.18 - 0.62 μ\mum range relative to the studied models, yet compatible with them within systematics.Comment: Accepted by MNRA

    Monitoring of the radio galaxy M87 during a low emission state from 2012 to 2015 with MAGIC

    Get PDF
    M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100GeV to 10TeV with a simple power law with a photon index of (-2.41 ±\pm 0.07), while the integral flux above 300GeV is (1.44±0.13)×1012cm2s1(1.44 \pm 0.13) \times 10^{-12} cm^{-2} s^{-1}. During the campaign between 2012 and 2015, M87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M87 campaign is consistent with a constant flux with some hint of variability (3σ\sim3\sigma) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region

    Long-term multi-wavelength study of 1ES 0647+250

    Get PDF
    The BL Lac object 1ES 0647+250 is one of the few distant γ\gamma-ray emitting blazars detected at very high energies (VHE, \gtrsim100 GeV) during a non-flaring state. It was detected with the MAGIC telescopes during its low activity in the years 2009-2011, as well as during three flaring activities in the years 2014, 2019 and 2020, with the highest VHE flux in the latter epoch. An extensive multi-instrument data set was collected within several coordinated observing campaigns throughout these years. We aim to characterise the long-term multi-band flux variability of 1ES 0647+250, as well as its broadband spectral energy distribution (SED) during four distinct activity states selected in four different epochs, in order to constrain the physical parameters of the blazar emission region under certain assumptions. We evaluate the variability and correlation of the emission in the different energy bands with the fractional variability and the Z-transformed Discrete Correlation Function, as well as its spectral evolution in X-rays and γ\gamma rays. Owing to the controversy in the redshift measurements of 1ES 0647+250 reported in the literature, we also estimate its distance in an indirect manner through the comparison of the GeV and TeV spectra from simultaneous observations with Fermi-LAT and MAGIC during the strongest flaring activity detected to date. Moreover, we interpret the SEDs from the four distinct activity states within the framework of one-component and two-component leptonic models, proposing specific scenarios that are able to reproduce the available multi-instrument data.Comment: 20 pages, 7 figures. Accepted in A&A. Corresponding authors: Jorge Otero-Santos; Daniel Morcuende; Vandad Fallah Ramazani; Daniela Dorner; David Paneque (mailto: [email protected]
    corecore