68 research outputs found

    Searching for galactic axions through magnetized media: QUAX status report

    Full text link
    The current status of the QUAX R\&D program is presented. QUAX is a feasibility study for a detection of axion as dark matter based on the coupling to the electrons. The relevant signal is a magnetization change of a magnetic material placed inside a resonant microwave cavity and polarized with a static magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    Initial operation of the International Gravitational Event Collaboration

    Full text link
    The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted to the International Journal of Modern Physic

    Galactic axions search with a superconducting resonant cavity

    Full text link
    To account for the dark matter content in our Universe, post-inflationary scenarios predict for the QCD axion a mass in the range (10-10^3)\,\mu\mbox{eV}. Searches with haloscope experiments in this mass range require the monitoring of resonant cavity modes with frequency above 5\,GHz, where several experimental limitations occur due to linear amplifiers, small volumes, and low quality factors of Cu resonant cavities. In this paper we deal with the last issue, presenting the result of a search for galactic axions using a haloscope based on a 36\,\mbox{cm}^3 NbTi superconducting cavity. The cavity worked at T=4\,\mbox{K} in a 2\,T magnetic field and exhibited a quality factor Q0=4.5×105Q_0= 4.5\times10^5 for the TM010 mode at 9\,GHz. With such values of QQ the axion signal is significantly increased with respect to copper cavity haloscopes. Operating this setup we set the limit g_{a\gamma\gamma}<1.03\times10^{-12}\,\mbox{GeV}^{-1} on the axion photon coupling for a mass of about 37\,ÎŒ\mueV. A comprehensive study of the NbTi cavity at different magnetic fields, temperatures, and frequencies is also presented

    IGEC2: A 17-month search for gravitational wave bursts in 2005-2007

    Get PDF
    We present here the results of a 515 days long run of the IGEC2 observatory, consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and NAUTILUS. The reported results are related to the fourfold observation time from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This period overlapped with the first long term observations performed by the LIGO interferometric detectors. The IGEC observations aim at the identification of gravitational wave candidates with high confidence, keeping the false alarm rate at the level of 1 per century, and high duty cycle, namely 57% with all four sites and 94% with at least three sites in simultaneous observation. The network data analysis is based on time coincidence searches over at least three detectors: the four 3-fold searches and the 4-fold one are combined in a logical OR. We exchanged data with the usual blind procedure, by applying a unique confidential time offset to the events in each set of data. The accidental background was investigated by performing sets of 10^8 coincidence analyses per each detector configuration on off-source data, obtained by shifting the time series of each detector. The thresholds of the five searches were tuned so as to control the overall false alarm rate to 1/century. When the confidential time shifts was disclosed, no gravitational wave candidate was found in the on-source data. As an additional output of this search, we make available to other observatories the list of triple coincidence found below search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.

    Results of the IGEC-2 search for gravitational wave bursts during 2005

    Get PDF
    The network of resonant bar detectors of gravitational waves resumed coordinated observations within the International Gravitational Event Collaboration (IGEC-2). Four detectors are taking part in this collaboration: ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was the only gravitational wave observatory in operation. The network data analysis implemented is based on a time coincidence search among AURIGA, EXPLORER and NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to the previous IGEC 1997-2000 observations, the amplitude sensitivity of the detectors to bursts improved by a factor about 3 and the sensitivity bandwidths are wider, so that the data analysis was tuned considering a larger class of detectable waveforms. Thanks to the higher duty cycles of the single detectors, we decided to focus the analysis on three-fold observation, so to ensure the identification of any single candidate of gravitational waves (gw) with high statistical confidence. The achieved false detection rate is as low as 1 per century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Progress in the development of a KITWPA for the DARTWARS project

    Get PDF
    DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic inductance of a high-resistivity superconductor (KITWPA). This paper presents the advancements made by the DARTWARS collaboration to produce a first working prototype of a KITWPA.Comment: 3 pages, 4 figures. Proceeding of Pisa15th Meeting conferenc

    Detector Array Readout with Traveling Wave Amplifiers

    Get PDF
    Reducing noise to the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation X-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifers. The Detector Array Readout with Traveling Wave Amplifers project has the goal of developing high-performing innovative traveling wave parametric amplifers with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two diferent promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution, we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements

    Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers

    Full text link
    The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device.Comment: 5 pages, 6 figure
    • 

    corecore