196 research outputs found

    Common Pitfalls in Analysis of Tissue Scores

    Get PDF
    Histopathology remains an important source of descriptive biological data in biomedical research. Recent petitions for enhanced reproducibility in scientific studies have elevated the role of tissue scoring (semiquantitative and quantitative) in research studies. Effective tissue scoring requires appropriate statistical analysis to help validate the group comparisons and give the pathologist confidence in interpreting the data. Each statistical test is typically founded on underlying assumptions regarding the data. If the underlying assumptions of a statistical test do not match the data, then these tests can lead to increased risk of erroneous interpretations of the data. The choice of appropriate statistical test is influenced by the study’s experimental design and resultant data (eg, paired vs unpaired, normality, number of groups, etc). Here, we identify 3 common pitfalls in the analysis of tissue scores: shopping for significance, overuse of paired t-tests, and misguided analysis of multiple groups. Finally, we encourage pathologists to use the full breadth of resources available to them, such as using statistical software, reading key publications about statistical approaches, and identifying a statistician to serve as a collaborator on the multidisciplinary research team. These collective resources can be helpful in choosing the appropriate statistical test for tissue-scoring data to provide the most valid interpretation for the pathologist

    Ectopic Expression of Zmiz1 Induces Cutaneous Squamous Cell Malignancies in a Mouse Model of Cancer

    Get PDF
    Cutaneous squamous cell carcinoma (SCC) is the second most common form of cancer in the human population, yet the underlying genetic mechanisms contributing to the disease are not well understood. We recently identified Zmiz1 as a candidate oncogene in nonmelanoma skin cancer through a transposon mutagenesis screen. Here we show that transposon-induced mutations in Zmiz1 drive expression of a truncated transcript that is similar to an alternative endogenous ZMIZ1 transcript found to be overexpressed in human SCCs relative to normal skin. We also describe an original mouse model of invasive keratoacanthoma driven by skin-specific expression of the truncated Zmiz1 transcript. Unlike most mouse models, Zmiz1-induced skin tumors develop rapidly and in the absence of promoting agents such as phorbol esters. In addition, we found that the alternative Zmiz1 isoform has greater protein stability than its full-length counterpart. Finally, we provide evidence that ZMIZ1 is overexpressed in a significant percentage of human breast, ovarian, and colon cancers in addition to human SCCs, suggesting that ZMIZ1 may play a broader role in epithelial cancers

    Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine

    Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses

    Get PDF
    Two zoonotic coronaviruses (CoV), SARS-CoV and MERS-CoV have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4+ T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4+ T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was interferon-γ-dependent and required early induction of robust innate and virus-specific CD8+ T cell responses. The conserved epitope was also recognized in SARS-CoV and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4+ T cells targeting conserved epitopes may have broad applicability in the context of new CoV and other respiratory virus outbreaks

    Francisella tularensis Schu S4 lipopolysaccharide core sugar and o-antigen mutants are attenuated in a mouse model of tularemia

    Get PDF
    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD(50)) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge

    Differential Expression of Ovine Innate Immune Genes by Preterm and Neonatal Lung Epithelia Infected with Respiratory Syncytial Virus

    Get PDF
    Preterm infants have increased susceptibility to severe manifestations of respiratory syncytial virus (RSV) infection. The cause(s) for this age-dependent vulnerability is/are not well-defined, but alterations in innate immune products have been implicated. In sheep, RSV disease severity has similar age-dependent characteristics and sheep have several related innate molecules for study during pulmonary infection including surfactant protein A (SP-A), surfactant protein D (SP-D), sheep beta defensin 1 (SBD1), monocyte chemotactic protein 1 (MCP1), and Toll-like receptor 4 (TLR4). However, the in vivo cellular gene expression as a response to RSV infection is poorly understood. In this study, the effect of RSV infection on expression of these innate immune genes was determined for bovine RSV-infected (bRSV+ fluorescence) epithelial cells, adjacent cells lacking bRSV antigen (adjoining cells lacking fluorescence), and control cells from non-infected lung using laser capture microdissection (LCM) and real-time RT-PCR. Control lambs had increased expression of innate immune molecules in full term (term) compared to preterm epithelia with statistical significance in SBD1, SP-D, and TLR4 mRNA. Infected cells (bRSV+ fluorescent cells) had consistently higher mRNA levels of SP-A (preterm and term), MCP1 (preterm and term), and SP-D (preterm). Interestingly, bRSV- cells of infected term lambs had significantly reduced SP-D mRNA expression compared to bRSV+ and control epithelia, suggesting that RSV infected cells may regulate the adjacent epithelial SP-D expression. This study defines specific innate immune components (e.g., SBD1, SP-D, and TLR4) that have differential age-dependent expression in the airway epithelia. Furthermore, cellular bRSV infection enhanced certain innate immune components while suppressing adjacent cellular SP-D expression in term animals. These in vivo gene expression results provide a framework for future studies on age-dependent susceptibility to RSV and RSV pathogenesis

    Observational Study Design in Veterinary Pathology, Part 1: Study Design

    Get PDF
    Observational studies are the basis for much of our knowledge of veterinary pathology and are highly relevant to the daily practice of pathology. However, recommendations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offer advice on planning and conducting an observational study with examples from the veterinary pathology literature. Investigators should recognize the importance of creativity, insight, and innovation in devising studies that solve problems and fill important gaps in knowledge. Studies should focus on specific and testable hypotheses, questions, or objectives. The methodology is developed to support these goals. We consider the merits and limitations of different types of analytic and descriptive studies, as well as of prospective vs retrospective enrollment. Investigators should define clear inclusion and exclusion criteria and select adequate numbers of study subjects, including careful selection of the most appropriate controls. Studies of causality must consider the temporal relationships between variables and the advantages of measuring incident cases rather than prevalent cases. Investigators must consider unique aspects of studies based on archived laboratory case material and take particular care to consider and mitigate the potential for selection bias and information bias. We close by discussing approaches to adding value and impact to observational studies. Part 2 of the series focuses on methodology and validation of methods

    Transepithelial migration of neutrophils into the lung requires TREM-1

    Get PDF
    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung

    MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity

    Get PDF
    International audienceMiddle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b. Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface

    Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations

    Get PDF
    Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research
    • …
    corecore