92 research outputs found

    Endemic Human Monkeypox, Democratic Republic of Congo, 2001–2004

    Get PDF
    By analyzing vesicle fluids and crusted scabs from 136 persons with suspected monkeypox, we identified 51 cases of monkeypox by PCR, sequenced the hemagglutinin gene, and confirmed 94% of cases by virus culture. PCR demonstrated chickenpox in 61 patients. Coinfection with both viruses was found in 1 additional patient

    Chasing Jenner's Vaccine: Revisiting Cowpox Virus Classification

    Get PDF
    Cowpox virus (CPXV) is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe “cowpox” as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5) species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of “cowpox” isolates. These data support the elevation of as many as four new species within the traditional “cowpox” group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine

    Monkeypox Transmission and Pathogenesis in Prairie Dogs

    Get PDF
    During May and June 2003, the first cluster of human monkeypox cases in the United States was reported. Most patients with this febrile vesicular rash illness presumably acquired the infection from prairie dogs. Monkeypox virus was demonstrated by using polymerase chain reaction in two prairie dogs in which pathologic studies showed necrotizing bronchopneumonia, conjunctivitis, and tongue ulceration. Immunohistochemical assays for orthopoxviruses demonstrated abundant viral antigens in surface epithelial cells of lesions in conjunctiva and tongue, with less amounts in adjacent macrophages, fibroblasts, and connective tissues. Viral antigens in the lung were abundant in bronchial epithelial cells, macrophages, and fibroblasts. Virus isolation and electron microscopy demonstrated active viral replication in lungs and tongue. These findings indicate that both respiratory and direct mucocutaneous exposures are potentially important routes of transmission of monkeypox virus between rodents and to humans. Prairie dogs offer insights into transmission, pathogenesis, and new vaccine and treatment trials because they are susceptible to severe monkeypox infection

    Ecological Niche and Geographic Distribution of Human Monkeypox in Africa

    Get PDF
    Monkeypox virus, a zoonotic member of the genus Orthopoxviridae, can cause a severe, smallpox-like illness in humans. Monkeypox virus is thought to be endemic to forested areas of western and Central Africa. Considerably more is known about human monkeypox disease occurrence than about natural sylvatic cycles of this virus in non-human animal hosts. We use human monkeypox case data from Africa for 1970–2003 in an ecological niche modeling framework to construct predictive models of the ecological requirements and geographic distribution of monkeypox virus across West and Central Africa. Tests of internal predictive ability using different subsets of input data show the model to be highly robust and suggest that the distinct phylogenetic lineages of monkeypox in West Africa and Central Africa occupy similar ecological niches. High mean annual precipitation and low elevations were shown to be highly correlated with human monkeypox disease occurrence. The synthetic picture of the potential geographic distribution of human monkeypox in Africa resulting from this study should support ongoing epidemiologic and ecological studies, as well as help to guide public health intervention strategies to areas at highest risk for human monkeypox

    Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens

    Get PDF
    Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A systematic review of non-invasive modalities used to identify women with anal incontinence symptoms after childbirth

    Get PDF
    © 2018, The International Urogynecological Association. Introduction and hypothesis: Anal incontinence following childbirth is prevalent and has a significant impact upon quality of life (QoL). Currently, there is no standard assessment for women after childbirth to identify these symptoms. This systematic review aimed to identify non-invasive modalities used to identify women with anal incontinence following childbirth and assess response and reporting rates of anal incontinence for these modalities. Methods: Ovid Medline, Allied and Complementary Medicine Database (AMED), Cumulative Index of Nursing and Allied Health Literature (CINAHL), Cochrane Collaboration, EMBASE and Web of Science databases were searched for studies using non-invasive modalities published from January 1966 to May 2018 to identify women with anal incontinence following childbirth. Study data including type of modality, response rates and reported prevalence of anal incontinence were extracted and critically appraised. Results: One hundred and nine studies were included from 1602 screened articles. Three types of non-invasive modalities were identified: validated questionnaires/symptom scales (n = 36 studies using 15 different instruments), non-validated questionnaires (n = 50 studies) and patient interviews (n = 23 studies). Mean response rates were 92% up to 6 weeks after childbirth. Non-personalised assessment modalities (validated and non-validated questionnaires) were associated with reporting of higher rates of anal incontinence compared with patient interview at all periods of follow-up after childbirth, which was statistically significant between 6 weeks and 1 year after childbirth (p < 0.05). Conclusions: This systematic review confirms that questionnaires can be used effectively after childbirth to identify women with anal incontinence. Given the methodological limitations associated with non-validated questionnaires, assessing all women following childbirth for pelvic-floor symptomatology, including anal incontinence, using validated questionnaires should be considered

    First measurement of θ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment

    Get PDF
    The Double Chooz experiment has determined the value of the neutrino oscillation parameter θ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22θ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22θ13
    corecore