44 research outputs found

    Genetic Defects in the Growth Hormone–IGF-I Axis Causing Growth Hormone Insensitivity and Impaired Linear Growth

    Get PDF
    Human genetic defects in the growth hormone (GH)–IGF-I axis affecting the IGF system present with growth failure as their principal clinical feature. This is usually associated with GH insensitivity (GHI) presenting in childhood as severe or mild short stature. Dysmorphic features and metabolic abnormalities may also be present. The field of GHI due to mutations affecting GH action has evolved rapidly since the first description of the extreme phenotype related to homozygous GH receptor (GHR) mutations in 1966. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The mechanisms of the GH–IGF-I axis in the regulation of normal human growth is discussed followed by descriptions of mutations in GHR, STAT5B, IGF-I, IGFALS, IGF1R, and GH1 defects causing bio-inactive GH or anti-GH antibodies. These GH–IGF-I axis defects are associated with a range of clinical, and hormonal characteristics. An up-dated approach to the clinical assessment of the patient with GHI focusing on investigation of the GH–IGF-I axis and relevant molecular studies contributing to the identification of causative genetic defects is also discussed

    Functional consequence of a novel Y129C mutation in a patient with two contradictory melanocortin-2-receptor mutations

    Get PDF
    L F C and T-T C are supported by M R C Clinical Research Training Fellowships (grant numbers G0600408, G0700581) and L A M by the Wellcome Trust (grant number 076430/Z/05/7)

    Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency

    Get PDF
    Context: Familial glucocorticoid deficiency (FGD) is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia and/or overwhelming infection. Mutations of the ACTH receptor (MC2R) and the melanocortin 2 receptor accessory protein (MRAP), FGD types 1 and 2 respectively, account for approximately 45% of cases. Objective: A locus on chromosome 8 has previously been linked to the disease in three families, but no underlying gene defect has to date been identified. Design: The study design comprised single-nucleotide polymorphism genotyping and mutation detection. Setting: The study was conducted at secondary and tertiary referral centers. Patients: Eighty probands from families referred for investigation of the genetic cause of FGD participated in the study. Interventions: There were no interventions. Results: Analysis by single-nucleotide polymorphism array of the genotype of one individual with FGD previously linked to chromosome 8 revealed a large region of homozygosity encompassing the steroidogenic acute regulatory protein gene, STAR. We identified homozygous STAR mutations in this patient and his affected siblings. Screening of our total FGD patient cohort revealed homozygous STAR mutations in a further nine individuals from four other families. Conclusions: Mutations in STAR usually cause lipoid congenital adrenal hyperplasia, a disorder characterized by both gonadal and adrenal steroid deficiency. Our results demonstrate that certain mutations in STAR (R192C and the previously reported R188C) can present with a phenotype indistinguishable from that seen in FGD

    ACTH signalling and adrenal development: lessons from mouse models

    Get PDF
    The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r−/−) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap−/− mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap−/− mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation

    Homozygous nonsense and frameshift mutations of the ACTH receptor in children with familial glucocorticoid deficiency (FGD) are not associated with long-term mineralocorticoid deficiency

    Get PDF
    Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease characterized by isolated glucocorticoid deficiency with preserved mineralocorticoid secretion. Mutations in the ACTH receptor (MC2R) account for approximately 25% of all FGD cases, but since these are usually missense mutations, a degree of receptor function is frequently retained. A recent report, however, suggested that disturbances in the renin-aldosterone axis were seen in some patients with potentially more severe MC2R mutations. Furthermore, MC2R knock out mice have overt aldosterone deficiency and hyperkalaemia despite preservation of a normal zona glomerulosa. We wished to determine whether a group of patients with severe nonsense mutations of the MC2R exhibited evidence of mineralocorticoid deficiency, thereby challenging the conventional diagnostic feature of FGD which might result in diagnostic misclassification

    Novel polymorphisms and lack of mutations in the ACD gene in patients with ACTH resistance syndromes

    Full text link
    Objective  ACTH resistance is a feature of several human syndromes with known genetic causes, including familial glucocorticoid deficiency (types 1 and 2) and triple A syndrome. However, many patients with ACTH resistance lack an identifiable genetic aetiology. The human homolog of the Acd gene, mutated in a mouse model of adrenal insufficiency, was sequenced in 25 patients with a clinical diagnosis of familial glucocorticoid deficiency or triple A syndrome. Design  A 3·4 kilobase genomic fragment containing the entire ACD gene was analysed for mutations in all 25 patients. Setting  Samples were obtained by three investigators from different institutions. Patients  The primary cohort consisted of 25 unrelated patients, primarily of European or Middle Eastern descent, with a clinical diagnosis of either familial glucocorticoid deficiency (FGD) or triple A syndrome. Patients lacked mutations in other genes known to cause ACTH resistance, including AAAS for patients diagnosed with triple A syndrome and MC2R and MRAP for patients diagnosed with familial glucocorticoid deficiency. Thirty-five additional patients with adrenal disease phenotypes were added to form an expanded cohort of 60 patients. Measurements  Identification of DNA sequence changes in the ACD gene in the primary cohort and analysis of putative ACD haplotypes in the expanded cohort. Results  No disease-causing mutations were found, but several novel single nucleotide polymorphisms (SNPs) and two putative haplotypes were identified. The overall frequency of SNPs in ACD is low compared to other gene families. Conclusions  No mutations were identified in ACD in this collection of patients with ACTH resistance phenotypes. However, the newly identified SNPs in ACD should be more closely examined for possible links to disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73948/1/j.1365-2265.2007.02855.x.pd

    HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes

    Get PDF
    Context: Self-limited delayed puberty (DP) segregates in an autosomal-dominant pattern, but the genetic basis is largely unknown. Although DP is sometimes seen in relatives of patients with hypogonadotropic hypogonadism (HH), mutations in genes known to cause HH that segregate with the trait of familial self-limited DP have not yet been identified. Objective: To assess the contribution of mutations in genes known to cause HH to the phenotype of self-limited DP. Design, Patients, and Setting: We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited DP, validated the pathogenicity of the identified gene variant in vitro, and examined the tissue expression and functional requirement of the mouse homolog in vivo. Results: A potentially pathogenic gene variant segregating with DP was identified in 1 of 28 known HH genes examined. This pathogenic variant occurred in HS6ST1 in one pedigree and segregated with the trait in the six affected members with heterozygous transmission (P = 3.01 x 10 -5 ). Biochemical analysis showed that this mutation reduced sulfotransferase activity in vitro. Hs6st1 mRNA was expressed in peripubertal wild-type mouse hypothalamus. GnRH neuron counts were similar in Hs6st1 (+/-) and Hs6st1(+/+) mice, but vaginal opening was delayed in Hs6st1(+/-) mice despite normal postnatal growth. Conclusions: We have linked a deleterious mutation in HS6ST1 to familial self-limited DP and show that heterozygous Hs6st1 loss causes DP in mice. In this study, the observed overlap in potentially pathogenic mutations contributing to the phenotypes of self-limited DP and HH was limited to this one gene.Peer reviewe

    NNT pseudoexon activation as a novel mechanism for disease in two siblings with familial glucocorticoid deficiency

    Get PDF
    CONTEXT: Intronic DNA frequently encodes potential exonic sequences called pseudoexons. In recent years, mutations resulting in aberrant pseudoexon inclusion have been increasingly recognized to cause disease. OBJECTIVES: To find the genetic cause of familial glucocorticoid deficiency (FGD) in two siblings. PATIENTS: The proband and his affected sibling, from nonconsanguineous parents of East Asian and South African origin, were diagnosed with FGD at the ages of 21 and 8 months, respectively. DESIGN: Whole exome sequencing was performed on genomic DNA (gDNA) of the siblings. Variants in genes known to cause FGD were assessed for causality. Further analysis of gDNA and cDNA was performed by PCR/RT-PCR followed by automated Sanger sequencing. RESULTS: Whole exome sequencing identified a single, novel heterozygous variant (p.Arg71*) in nicotinamide nucleotide transhydrogenase (NNT) in both affected individuals. Follow-up cDNA analysis in the proband identified a 69-bp pseudoexon inclusion event, and Sanger sequencing of his gDNA identified a 4-bp duplication responsible for its activation. The variants segregated with the disease: p.Arg71* was inherited from the mother, the pseudoexon change was inherited from the father, and an unaffected sibling had inherited only the p.Arg71* variant. CONCLUSIONS: FGD in these siblings is caused by compound heterozygous mutations in NNT; one causing pseudoexon inclusion in combination with another leading to Arg71*. Discovery of this pseudoexon activation mutation highlights the importance of identifying sequence changes in introns by cDNA analysis. The clinical implications of these findings include: facilitation of antenatal genetic diagnosis, early institution of potentially lifesaving therapy, and the possibility of preventative or curative interventio

    Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome

    Get PDF
    Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore