

Prasad, R., Hadjidemetriou, I., Maharaj, A., Meimaridou, E., Buonocore, F., Saleem, M., ... Metherell, L. A. (2017). Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. *Journal of Clinical Investigation*, *127*(3), 942-953. https://doi.org/10.1172/JCI90171

Peer reviewed version

Link to published version (if available): 10.1172/JCI90171

Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Supplementary Figures

Supplementary Figure 1. Representative image of electron microscopy of renal biopsy from Patient 5, with widespread partial podocyte foot effacement (circled) and flattening of foot processes.

Supplementary Figure 2. Clinical finding of ichthyosis for patient 7, hyperpigmentation as a consequence of primary adrenal insufficiency is also seen

Supplementary Figure 3. Cranial MRI of patient 5 showing the progressive nature of her disease, aged 8m and 4.3yr. At 4.3 yr (right panel), hyperintensity is seen in the globus pallidus (green arrow), medial thalamic nuclei (blue arrow) and pons (red arrow). These features were not seen on scanning at 8 m.

Supplementary Figure 4. Plasma sphingolipid intermediate levels, assayed by mass spectrometry, of Patient 5 and heterozygote parents with age and sex-matched controls

Supplementary Figure 5. SGPL1 expression in the tubules and glomeruli in normal human adult kidney; within the glomerulus staining is apparent predominantly in podocytes (arrowed); Source: Human protein atlas (<u>http://www.proteinatlas.org/</u>) where sections from a normal adult human kidney have been stained using a rabbit polyclonal antibody against SGPL1 (Sigma-Aldrich, HPA023086).

Chromosome	Position	Reference Allele	Gene Region	Gene Symbol	Protein Variant	Family 1 allele	Family 2 allele	Translation Impact	SIFT Function Prediction	PolyPhen-2 Function Prediction	dbSNP ID	NHLBI ESP Frequency (%)	NHLBI ESP African Frequency (%)	NHLBI ESP European Frequency (%)	ExAC Frequency (%)
10	72576882	Т	Intronic	SGPL1		С	Т				41315008				0
10	72619205	С	Exonic	SGPL1	p.I188I	Т	Т	synonymous			827255	98.25	94.87	99.99	99.55
10	72628151	G	Exonic	SGPL1	p.R222Q	А	А	missense	Damaging	Probably Damaging	769259446	0	0	0	1.70E- 05
10	72629567	С	Exonic	SGPL1	p.A241A	С	Т	synonymous			827249	3.98	4.27	3.84	5.34
10	72631626	С	Exonic	SGPL1	p.V314V	С	Т	synonymous			865832	16.45	9.08	20.22	17.64
10	72636450	Т	Intronic	SGPL1		G	Т				923177	73.21	73.35	73.14	76.58

Supplementary Table 1. The mutation resulting in p.R222Q and surrounding SNPs in Kindreds 1 and 2.

Patient	Biopsy report
1 ^A	Light microscopy: Focal segmental glomerulosclerosis
	Immunofluorescence: Granular membrane and mesangial positivity of IgM, weak
	positivity of C3 and C1q in the same distribution; IgG and IgA negative
5	Light microscopy: Focal segmental glomerulosclerosis, tubular regenerative changes
	Immunofluorescence: Glomerular/ focal/ segmental positivity of IgM, C3 positive, kappa/
	A weakly positive; IgG negative, IgA negative, C19 negative
	Electron microscony: Vacualisation of tubular nodecutes, nodecute fact process
	effection microscopy. Vacuoisation of tubular podocytes, podocyte root process
	in tubules (rectangular, comma shaped swollen mitochondria)
6	Light microscopy: 20 glomeruli with more than 10 showing global sclerosis. Increase in
Ũ	mesangial matrix and mesangial hypercellularity. Adhesion the Bowman's capsule. 2
	glomeruli with cellular crescents. Interstitial: Tubular dilatations and tubular atrophy
	Immunofluorescence: IgM positive, IgA negative, IgG negative; C3 positive, C1q negative
7	Light microscopy: Nine glomeruli, one collapse. Increase in mesangial matrix and
	mesangial hypercellularity. Adhesion the Bowman's capsule. Podocyte hyperplasia and
	hypertrophy with vacuoles. Interstitial fibrosis and focal tubular atrophy and tubular
	dilatations.
	Immunofluoresence: negative

Supplementary Table 2. Further details of kidney biopsy results for patients with SRNS

^AAs published by Ram and colleagues, 2012 (9)

Supplementary Table 3. Immunophenotyping of Patient 5. Sampling at 5.9 yr, techniques as previously described (1); Peripheral blood lymphocyte numbers: 1000 cells/µl; 19.4% of total leucocyte count (NR 21-40)). TCR $\alpha\beta$; T-cell receptor (TCR) α - and β -chain, TCR Y δ ; T-cell receptor (TCR) Y- and δ -chain.

Subset	% Cells	Cells/µl	Normal range	Comment
			(NR)	
CD3 ⁺	64.9	640	(>700)	Low
CD3 ⁺ CD4 ⁺	30.3	300	(>300)	Normal
CD3 ⁺ CD8 ⁺	27.1	270	(>300)	Low
CD3⁺CD4⁻CD8⁻	2.09			Normal
T cell repertoire	92			Normal
(TCR αβ)				
T cell repertoire	7.5			Normal
(TCR yΔ)				
CD3 ⁺ /HLADR ⁺	8.8		(3-14%)	Normal
Recent thymic	61.4		(41-81%)	Normal
emigrant (RTE)				
Naïve CD4⁺	29.8	(53-86)		Low
Memory CD4 ⁺	43.4	(9-26)		High
Naïve CD8 ⁺	60.8	(>69)		Low
Memory CD8 ⁺	40	(4-16)		High
CD19 ⁺		160	(>200)	Low
CD16 ⁺ /CD56 ⁺		140	(>90)	Normal
Class-switched B cell	12.2		(>10.9%)	Normal
Unclass-switched B	20.5		(5.2-20.4%)	Normal
cell				

Transitional B cell	1.03	(>4.6%)	Low
Plasmablast	8.3	(0.6-5.3%)	High

Supplementary Table 4. T lymphocyte proliferation assay of Patient 5

	Normal saline	Phytohaemagluttinin	CD mix ^c (%)
	stimulation ^A (%)	stimulation ^B (%)	
Patient 5	5	41	66.7
Age and sex matched	6	23.4	40.4
control			

The ability of T lymphocytes to proliferate in response to ^Asaline, a ^Bmitogen (Phytohaemagluttinin) or ^Canti–T cell receptor (anti-CD3/CD28 antibody; CD mix) was determined *in vitro*. Relative T cell expansion is compared to an age and sex matched control. Assays performed at 5.9 yr, techniques as previously described (1).

Supplementary Table 5. Primer Sequences

Name	Sequence (5' to 3')
SGPL1 EX2 for	AGGAGGGAGAGAACCATAACT
SGPL1 EX2 rev	AGCAAGCATCAGAGGTGA
SGPL1 EX3 for	GAATGACCTTGCCCTTGA
SGPL1 EX3 rev	ACTCCAGCCTAGCAACAGA
SGPL1 EX4 for	ACTCTTTGCAATTGGAAGG
SGPL1 EX4 rev	CCTCCACTTTGAGAATATTAGGTT
SGPL1 EX5 for	AGCAGTTGCTTGACTGTCA
SGPL1 EX5 rev	GAAATTCAACCTGTGAAACAG
SGPL1 EX6 for	ATCCAGAGGAGTTTCTTCCT
SGPL1 EX6 rev	AAGGAGGTCATGTAAACTGG
SGPL1 EX7 for	ACTGTTGTTTAGTGCATGATTCT
SGPL1 EX7 rev	ACTGCAGTTAATTAGGATCTTTG
SGPL1 EX8 for	GAAATCGTGAGGATAGCTTG
SGPL1 EX8 rev	CACAATCTTCATCCCAAAG
SGPL1 EX9 for	GAACTTACTCCCGGTAATTTAGA
SGPL1 EX9 rev	GTCAGACCCATCTGACTGG
SGPL1 EX10 for	CTGGAACTCTAAGCTAGCAGC
SGPL1 EX10 rev	GAGCTACTTATCACTACTGTGGTCA
SGPL1 EX11 for	CATCTTTCCACCCATGTCT
SGPL1 EX11 rev	GTGACGGCAAAGAGAGAGT
SGPL1 EX12 for	TGCATGATGAGAGTTCTGG
SGPL1 EX12 rev	GAGACAACAGGTGGGCTA
SGPL1 EX13 for	GTGACCAGGGGATTGTATG

SGPL1 EX13 rev	TTGCTACTAACGTGCTAGCCT
SGPL1 EX14 for	CTTGTCAGAAATATTGTGAAAGG
SGPL1 EX14 rev	CAGACTCCGGGTCATATG
SGPL1 EX15 for	AGTGCACATGCGAAGCTA
SGPL1 EX15 rev	GAGGCTCAAGCTGTCTCAT
SGPL1 cDNA for	TGGAGATTTTGCATGGAG
SGPL1 cDNA rev	CACCTCCATCATCTTCGT
SGPL1 cDNA for 2	GATATCTTCCCAGGACTACG
SGPL1 cDNA rev 2	CATCATCTTCGTCAATGG
GAPDH cDNA for	GAAGGTGAAGGTCGGAGTC
GAPDH cDNA rev	GAAGATGGTGATGGGATTTC

Supplementary	/ Table 6.	Primer see	auences foi	r site di	rected r	nutagenesis
• • • • • • • • • • • • • • • • • • •			446			

Name	Sequence (5' to 3')
SGPL1 'p.R222Q' for	GCCTGCAAAGCATATCAGGATCTGGCCTTTGAG
SGPL1 'p.R222Q' rev	CTCAAAGGCCAGATCCTGATATGCTTTGCAGGC
SGPL1 'p.F545del' for	CAGAATTGTCCTCAGTCTTGGACAGCTTGTACAG
<i>SGPL1</i> 'p.F545del' rev	CTGTACAAGCTGTCCAAGACTGAGGACAATTCTG

Supplemental Acknowledgements

GOSgene: We thank the members of GOSgene (Hywel Williams, Polona Le Quesne Stabej, Louise Ocaka, Chela James, Nital Jani, Chiara Bacchelli and Philip Beales. GOSgene is supported by the NIHR BRC at Great Ormond Street Hospital for Children NHS Foundation Trust and UCL Institute of Child Health.

Supplemental References

1. Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, Charbonnier LM, Bakir M, Boztug K, Chatila TA, et al. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. *Journal of clinical immunology*. 2016.