37 research outputs found

    Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis

    Get PDF
    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain

    Methods and tools to evaluate the availability of renewable energy sources

    Get PDF
    The recent statements of both the European Union and the US Presidency pushed in the direction of using renewable forms of energy, in order to act against climate changes induced by the growing concentration of carbon dioxide in the atmosphere. In this paper, a survey regarding methods and tools presently available to determine potential and exploitable energy in the most important renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented. Moreover, challenges for each renewable resource are highlighted as well as the available tools that can help in evaluating the use of a mix of different sources

    Energy yields of small grid connected photovoltaic system: effects of component reliability and maintenance

    No full text
    This is an Open Access Article published by IET and distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed.The likelihood of system failure of small systems is investigated in order to establish the risk associated for the investment into a photovoltaic (PV) system for small domestic applications. This is achieved by reviewing existing literature on PV system failure rates and using these as an input for a statistical PV system yield simulation tool that considers failure and repair. It is typically assumed that these systems do not require any maintenance, but it is shown that this will have near catastrophic impact on the energy production of PV systems. The no maintenance is not a likely scenario, as small systems have to register their generation to achieve a feed-in-tariff. In a later stage, when PV is used for self-consumption only, this may change but in the present market most users are forced to carry out a quarterly check and thus this catastrophic failure is avoided by the need of having to apply for the feed-in-tariff. Minimum maintenance strategies for ensuring profitable system operation are investigated and their cost-effectiveness is discussed. It is shown that the present situation where many systems are neither monitored nor is any maintenance carried out results in a high probability of unsuccessful system operation as failure detection may take a very long time. Successful system operation here is defined as not recovering the financial investment. It would be advisable to carry out at least monthly performance checks as otherwise it is likely to have more than 10% energy lost because of system downtime. This requires, however, availability of irradiance data as otherwise it is not possible to identify whether low yields are due to resource issues or really system yield issues
    corecore