598 research outputs found
Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope
Radio polarimetry at decimetre wavelengths is the principal source of
information on the Galactic magnetic field. The diffuse polarized emission is
strongly influenced by Faraday rotation in the magneto-ionic medium and
rotation measure is the prime quantity of interest, implying that all Stokes
parameters must be measured over wide frequency bands with many frequency
channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a
polarization transducer to deliver both hands of circular polarization, and a
receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between
40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially
available components, produces all Stokes parameters in 2048 frequency channels
over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier
Transform is applied to each data stream. Stokes parameters are then generated
in each frequency channel. This instrument is in use at DRAO for a Northern sky
polarization survey. Observations consist of scans up and down the Meridian at
a drive rate of 0.9 degree per minute to give complete coverage of the sky
between declinations -30 degree and 90 degree. This paper presents a complete
description of the receiver and data acquisition system. Only a small fraction
of the frequency band of operation is allocated for radio astronomy, and about
20 percent of the data are lost to interference. The first 8 percent of data
from the survey are used for a proof-of-concept study, which has led to the
first application of Rotation Measure Synthesis to the diffuse Galactic
emission obtained with a single-antenna telescope. We find rotation measure
values for the diffuse emission as high as approximately 100 rad per square
metre, much higher than recorded in earlier work.Comment: Accepted for publication in The Astronomical Journa
Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.
How Should Addiction-Related Research at the National Institutes of Health be Reorganized?
The decades-old debate about the optimum organizational structure of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA) has reached a crescendo with the recent deliberations of the Scientific Management Review Board, which, despite the lack of a crisis, proposed a structural reorganization that would dissolve the two institutes and create a new institute for substance use, abuse, and addiction, in hope of new scientific and public health advances (Collins, 2010). For a new institute to succeed, a multitude of potential challenges need to be negotiated effectivel
Avalanche amplification of a single exciton in a semiconductor nanowire
Interfacing single photons and electrons is a crucial ingredient for sharing
quantum information between remote solid-state qubits. Semiconductor nanowires
offer the unique possibility to combine optical quantum dots with avalanche
photodiodes, thus enabling the conversion of an incoming single photon into a
macroscopic current for efficient electrical detection. Currently, millions of
excitation events are required to perform electrical read-out of an exciton
qubit state. Here we demonstrate multiplication of carriers from only a single
exciton generated in a quantum dot after tunneling into a nanowire avalanche
photodiode. Due to the large amplification of both electrons and holes (>
10^4), we reduce by four orders of magnitude the number of excitation events
required to electrically detect a single exciton generated in a quantum dot.
This work represents a significant step towards single-shot electrical read-out
and offers a new functionality for on-chip quantum information circuits
Increased response to morphine in mice lacking protein kinase C epsilon
The protein kinase C (PKC) family of serine–threonine kinases has been implicated in behavioral responses to opiates, but little is known about the individual PKC isozymes involved. Here, we show that mice lacking PKCε have increased sensitivity to the rewarding effects of morphine, revealed as the expression of place preference and intravenous self-administration at very low doses of morphine that do not evoke place preference or self-administration in wild-type mice. The PKCε null mice also show prolonged maintenance of morphine place preference in response to repeated testing when compared with wild-type mice. The supraspinal analgesic effects of morphine are enhanced in PKCε null mice, and the development of tolerance to the spinal analgesic effects of morphine is delayed. The density of μ-opioid receptors and their coupling to G-proteins are normal. These studies identify PKCε as a key regulator of opiate sensitivity in mice
The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models
We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. the model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. the analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, EPM UNIFESP, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilLNBio CNPEM, Lab Nacl Biociencias, Campinas, SP, BrazilLGE UNICAMP, Lab Genom & Expressao, Campinas, SP, BrazilInst Agron Campinas, Ctr Pesquisa & Desenvolvimento Recursos Geneti Ve, Campinas, SP, BrazilUniv Calif San Diego, Sch Med, Dept Pediat, San Diego, CA 92103 USAUniversidade Federal de São Paulo, UNIFESP, Dept Ciencia & Tecnol, Sao Jose Dos Campos, BrazilUniv N Carolina, Sch Med, Dept Genet, Chapel Hill, NC USAUniv Fed Minas Gerais, ICB UFMG, Inst Ciencias Biol, Dept Biol Geral, Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, EPM UNIFESP, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, UNIFESP, Dept Ciencia & Tecnol, Sao Jose Dos Campos, BrazilFAPESP: 07/50551-2FAPESP: 10/19335-4Web of Scienc
Therapy Insight: Parenteral Estrogen treatment for Prostate Cancer—a new dawn for an old therapy
Oral estrogens were the treatment of choice for carcinoma of the prostate for over four decades, but were abandoned because of an excess of cardiovascular and thromboembolic toxicity. It is now recognized that most of this toxicity is related to the first pass portal circulation, which upregulates the hepatic metabolism of hormones, lipids and coagulation proteins. Most of this toxicity can be avoided by parenteral (intramuscular or transdermal) estrogen administration, which avoids hepatic enzyme induction. It also seems that a short-term but modest increase in cardiovascular morbidity (but not mortality) is compensated for by a long-term cardioprotective benefit, which accrues progressively as vascular remodeling develops over time. Parenteral estrogen therapy has the advantage of giving protection against the effects of andropause (similar to the female menopause), which are induced by conventional androgen suppression and include osteoporotic fracture, hot flashes, asthenia and cognitive dysfunction. In addition, parenteral estrogen therapy is significantly cheaper than contemporary endocrine therapy, with substantive economic implications for health providers
Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance
M13 universal non-homologous oligonucleotide tails incorporated into universal primers have been shown to improve amplification and sequencing performance. However, a few protocols use these tails in the field of food inspection. In this study, two types of M13 tails (by Steffens and Messing) were selected to assess their benefits using universal cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene (16SrRNA) primers in standard procedures. The primer characteristics were tested in silico. Then, using 20 DNA samples of edible species (birds, fishes, and mammals), their performance during PCR amplification (band recovery and intensity) and sequencing (sequence recovery, length, and Phred score) was assessed and compared. While 16SrRNA tailed and non-tailed primers performed similarly, differences were found for COI primers. Messing’s tails negatively affected the reaction outputs, while Steffens’ tails significantly improved the band intensity and the length of the final contigs based on the individual bidirectional read sequence. This different performance could be related to a destabilization effect of certain tails on primers with unfavorable mismatches on the annealing region. Even though our results cannot be generalized because the tail performances are strictly dependent on laboratory conditions, they show that appropriate tails can improve the overall throughput of the analysis, supporting food traceabilit
- …