60 research outputs found

    Detection of Small-Scale Rockfall Incidents Using Their Seismic Signature

    Get PDF
    Several algorithms have been effectively used to identify the seismic signature of rockfall incidents, which constitute a significant threat for human lives and infrastructure especially when occurring along transportation networks. These algorithms have been mostly evaluated using data from large scale rockfall events that release a large amount of energy. However, low-energy rockfall events (\u3c 100 Joules) triggered by small-sized individual rocks falling from small heights can be severely destructive. In this study, a three-parameter algorithm has been developed to identify low-energy rockfall events. An experimental setup was implemented to 1) validate the results obtained by this algorithm against visual inspection of seismic signals records, 2) define the optimal algorithm parameterization to minimize false alarms, and 3) investigate whether tri-axial vibration monitoring can be replaced by a uniaxial device in order to reduce the installation cost of a real-time rockfall monitoring system. It was found that the success rate of the proposed algorithm exceeds 80% independently of the parameters used, while event identification at a maximum distance with minimal false alarms was achieved when using mean ± 3σ as the threshold criterion and 6 ms and 4 ms as the trigger and event window parameters respectively. Finally, it was found that for the specific experimental setup, a uniaxial device could be used for rockfall event identification

    Detection of Seagrass Scars Using Sparse Coding and Morphological Filter

    Get PDF
    We present a two-step algorithm for the detection of seafloor propeller seagrass scars in shallow water using panchromatic images. The first step is to classify image pixels into scar and non-scar categories based on a sparse coding algorithm. The first step produces an initial scar map in which false positive scar pixels may be present. In the second step, local orientation of each detected scar pixel is computed using the morphological directional profile, which is defined as outputs of a directional filter with a varying orientation parameter. The profile is then utilized to eliminate false positives and generate the final scar detection map. We applied the algorithm to a panchromatic image captured at the Deckle Beach, Florida using the WorldView2 orbiting satellite. Our results show that the proposed method can achieve \u3e90% accuracy on the detection of seagrass scars

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Validation of Sentinel-3 OLCI Integrated Water Vapor Products Using Regional GNSS Measurements in Crete, Greece

    No full text
    Water vapor is one of the essential variables in monitoring the Earth’s climate. The Ocean and Land Color Instrument (OLCI) on-board the Copernicus Sentinel-3 missions measures the Integrated Water Vapor (IWV) column over land and ocean surfaces. Post-launch calibration and validation of satellite measurements constitutes a key process in the operational phase of Earth observation satellites. This work presents the external and independent validation of OLCI-A IWV product using the regional network of continuously operating Global Navigation Satellite System (GNSS) comprised 10 stations distributed over the island of Crete in the eastern Mediterranean. The Sentinel-3A/-3B OLCI imagery that captures in a single scene the entire area of Crete has been examined. For each OLCI image, the IWV value of cloud-free pixels containing the GNSS stations have been derived and compared against simultaneous GNSS-derived measurements. The absolute as well as the relative bias between OLCI-A and OLCI-B IWV measurements have been determined. There is a good agreement between OLCI and GNSS with a bias of −0.57 mm ± 2.90 mm for OLCI(A) and +2.42 ± 3.41 mm for OLCI(B). The results of this regional validation activity are compared against other studies and the regular validation carried out at the Sentinel-3 Mission Performance Center. This work concludes that the accuracy of the OLCI IWV products is within its design requirements. The potential synergy between Sentinel-2 and Sentinel-3 IWV products is also discussed

    Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders

    No full text
    Satellite altimetry plays a key role in monitoring changes in sea level and climate change. The quality of satellite altimetry products is commonly ensured through dedicated calibration. One such calibration is with microwave transponders acting as ground reference point targets. It is common practice that satellite ranges between the transponder phase center and the satellite center of gravity (CoG) are compared against the true geometric ranges to determine bias. Transponder ranges are, however, realized by the two phase centers of the altimeter and the ground transponder. So, to make this comparison feasible, the space origin of the measured range is transferred from the altimeter phase center (APC) to the satellite CoG by applying a constant offset, usually referred to as “CoG correction”. Instead of a fixed “CoG correction”, this work introduces the actual vector between APC and CoG in space, by examining the satellite attitude. Thus, the observed and geometric distances to the transponder are both referred to the APC. The case of Jason-3 and Sentinel-6A Michael Freilich (Sentinel-6A MF) with two transponders on Crete (CDN1) and Gavdos (GVD1) islands is examined. At first, the attitude of Jason-3 is determined by its quaternions. Then, analysis reveals that the transponder bias is correlated with the Jason-3 satellite attitude. The revised calibration brings about bias changes which fluctuate from about −2 mm to 1 mm in range and from −110μs to +110 μs in datation for Jason-3. Spectral analysis on the bias differences between the revised and conventional transponder calibrations reveals constituents with periods of 117, 39 and 23 days. Finally, the revised methodology on crossover calibrations over the GVD1 transponder results in an improvement between the mean bias of the ascending and descending orbits by 12% for Jason-3 and by 14% (preliminary) for Sentinel-6A MF

    Impact of Satellite Attitude on Altimetry Calibration with Microwave Transponders

    No full text
    Satellite altimetry plays a key role in monitoring changes in sea level and climate change. The quality of satellite altimetry products is commonly ensured through dedicated calibration. One such calibration is with microwave transponders acting as ground reference point targets. It is common practice that satellite ranges between the transponder phase center and the satellite center of gravity (CoG) are compared against the true geometric ranges to determine bias. Transponder ranges are, however, realized by the two phase centers of the altimeter and the ground transponder. So, to make this comparison feasible, the space origin of the measured range is transferred from the altimeter phase center (APC) to the satellite CoG by applying a constant offset, usually referred to as “CoG correction”. Instead of a fixed “CoG correction”, this work introduces the actual vector between APC and CoG in space, by examining the satellite attitude. Thus, the observed and geometric distances to the transponder are both referred to the APC. The case of Jason-3 and Sentinel-6A Michael Freilich (Sentinel-6A MF) with two transponders on Crete (CDN1) and Gavdos (GVD1) islands is examined. At first, the attitude of Jason-3 is determined by its quaternions. Then, analysis reveals that the transponder bias is correlated with the Jason-3 satellite attitude. The revised calibration brings about bias changes which fluctuate from about −2 mm to 1 mm in range and from −110ÎŒs to +110 ÎŒs in datation for Jason-3. Spectral analysis on the bias differences between the revised and conventional transponder calibrations reveals constituents with periods of 117, 39 and 23 days. Finally, the revised methodology on crossover calibrations over the GVD1 transponder results in an improvement between the mean bias of the ascending and descending orbits by 12% for Jason-3 and by 14% (preliminary) for Sentinel-6A MF

    DORIS and GPS monitoring of the Gavdos calibration site in Crete

    No full text
    International audienceDue to its specific geographical location as well as its geodetic equipment (DORIS, GNSS, microwave transponder and tide gauges), the Gavdos station in Crete, Greece is one of the very few sites around the world used for satellite altimetry calibration. To investigate the quality of the Gavdos geodetic coordinates and velocities, we analyzed and compared here DORIS and GPS-derived results obtained during several years of observations. The DORIS solution is the latest ignwd11 solution at IGN, expressed in ITRF2008, while the GPS solution was obtained using the GAMIT software package. Current results show that 1-2 mm/yr agreement can be obtained for 3-D velocity, showing a good agreement with current geophysical models. In particular, the agreement obtained for the vertical velocity is around 0.3-0.4 mm/yr, depending on the terrestrial reference frame. As a by-product of these geodetic GPS and DORIS results, Zenith Tropospheric Delays (ZTDs) estimations were also compared in 2010 between these two techniques, and compared to ECMWF values, showing a 6.6 mm agreement in dispersion without any significant difference between GPS and DORIS (with a 97.6% correlation), but with a 13-14 mm agreement in dispersion when comparing to ECMWF model (with only about 90% correlation for both techniques). These tropospheric delay estimations could also provide an external calibration of the tropospheric correction used for the geophysical data of satellite altimetry missions
    • 

    corecore