513 research outputs found
Enlèvement de la matière organique dans les filtres CAB
Cet article présente les résultats d'une étude sur le traitement par filtration sur charbon actif biologique (CAB), utilisé en usine de production d'eau potable en second étage de filtration, en aval d'une étape d'ozonation. L'objectif principal de cette étude était de caractériser la matière organique bioéliminée au cours de la filtration sur charbon actif afin d'obtenir une meilleure compréhension de l'abattement du carbone organique dissous (COD) et de la demande en chlore par ce procédé. Le carbone organique dissous biodégradable (CODB) éliminé au cours de ce traitement peut être corrélé à l'abattement de la demande en chlore et ce CODB présente une réactivité au chlore supérieure à celle du carbone organique réfractaire.Le couplage de techniques d'ultrafiltration au suivi des différentes fractions en cours d'incubation en batch pendant 35 jours avec un inoculum de bactéries indigènes libres, permet de préciser la nature des molécules susceptibles d'être bioéliminées et d'appréhender leur impact sur la demande en chlore de l'eau issue du traitement biologique. La nature de la matière organique présente dans l'eau en amont des filtres varie considérablement au cours de l'année; ainsi, en été, une augmentation importante de la fraction de molécules de haute masse molaire (> 10000 daltons) est observée. La filtration biologique n'affecte pas de manière significative la répartition des différentes tailles de molécules et de petites molécules ( 10 000 daltons) is the least bioeliminable and the fraction in the low molecular weight ( 10 000 daltons), without any carbon elimination during incubation, suggests that these molecules undergo important structural changes under the action of biological treatment
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold
atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on
different principles of operation: atomic and optical interferometry. Both are
movable which enabled them to participated to the last International Comparison
of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral
comparison took place in the LNE watt balance laboratory and showed an
agreement of 4.3 +/- 6.4 {\mu}Gal
Recommended from our members
SAR image segmentation with GMMs
This paper proposes a new approach for Synthetic Aperture Radar (SAR) image segmentation. Segmenting SAR images can be challenging because of the blurry edges and the high speckle. The segmentation proposed is based on a machine learning technique. Gaussian Mixture Models (GMMs) were already used to segment images in the visual field and are here adapted to work with single channel SAR images. The segmentation suggested is designed to be a first step towards feature and model based classification. The recall rate is the most important as the goal is to retain most target's features. A high recall rate of 88%, higher than for other segmentation methods on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, was obtained. The next classification stage is thus not affected by a lack of information while its computation load drops. With this method, the inclusion of disruptive features in models of targets is limited, providing computationally lighter models and a speed up in further classification as the narrower segmented areas foster convergence of models and provide refined features to compare. This segmentation method is hence an asset to template, feature and model based classification methods. Besides this method, a comparison between variants of the GMMs segmentation and a classical segmentation is provided
The electric double layer has a life of its own
Using molecular dynamics simulations with recently developed importance
sampling methods, we show that the differential capacitance of a model ionic
liquid based double-layer capacitor exhibits an anomalous dependence on the
applied electrical potential. Such behavior is qualitatively incompatible with
standard mean-field theories of the electrical double layer, but is consistent
with observations made in experiment. The anomalous response results from
structural changes induced in the interfacial region of the ionic liquid as it
develops a charge density to screen the charge induced on the electrode
surface. These structural changes are strongly influenced by the out-of-plane
layering of the electrolyte and are multifaceted, including an abrupt local
ordering of the ions adsorbed in the plane of the electrode surface,
reorientation of molecular ions, and the spontaneous exchange of ions between
different layers of the electrolyte close to the electrode surface. The local
ordering exhibits signatures of a first-order phase transition, which would
indicate a singular charge-density transition in a macroscopic limit
The Association Between Birthweight and Current Blood Pressure: A Cross-Sectional Study in an Australian Aboriginal Community
Objectives: To study the relationship of blood pressure to birthweight and current body mass index in a population with high rates of low birthweight (< 2.5 kg). Design: A cross-sectional population screening program conducted between 1992 and 1998, with retrospective retrieval of birthweights. Setting: A remote coastal Australian Aboriginal community with a high prevalence of diabetes, cardiovascular and renal disease. Participants: Eighty-two per cent of the community members (1473/1805) were screened. Birthweights were available for 767 (71%) of the screened participants aged 7-43 years. Main outcome measures: The association between birthweight and current blood pressure, accounting for current body mass index. Results: Mean birthweights were low, and 18% of children and 35% of adults had been low-birthweight babies. In children (7-17 years), blood pressure was not correlated with birthweight, but in adults there was an inverse correlation - a 1 kg increase in birthweight was associated with a 2.9 mmHg (95% CI, 0.3-5.5 mmHg) decrease in systolic blood pressure, after adjusting for age, sex and current weight. Overweight adults with low birthweight had the highest blood pressures. Conclusions: Low birthweight is significantly associated with higher blood pressure in adult life, and the effect is amplified by higher current weight. Given the high rates of low birthweight in Aboriginal people in remote areas, and the detrimental effect of higher blood pressures on chronic diseases (currently present in epidemic proportions), interventions should focus on improving birthweights and on weight control in adolescents and adults. Special attention should be paid to children with low birthweight to avoid their becoming overweight in adult life
Kochen-Specker Vectors
We give a constructive and exhaustive definition of Kochen-Specker (KS)
vectors in a Hilbert space of any dimension as well as of all the remaining
vectors of the space. KS vectors are elements of any set of orthonormal states,
i.e., vectors in n-dim Hilbert space, H^n, n>3 to which it is impossible to
assign 1s and 0s in such a way that no two mutually orthogonal vectors from the
set are both assigned 1 and that not all mutually orthogonal vectors are
assigned 0. Our constructive definition of such KS vectors is based on
algorithms that generate MMP diagrams corresponding to blocks of orthogonal
vectors in R^n, on algorithms that single out those diagrams on which algebraic
0-1 states cannot be defined, and on algorithms that solve nonlinear equations
describing the orthogonalities of the vectors by means of statistically
polynomially complex interval analysis and self-teaching programs. The
algorithms are limited neither by the number of dimensions nor by the number of
vectors. To demonstrate the power of the algorithms, all 4-dim KS vector
systems containing up to 24 vectors were generated and described, all 3-dim
vector systems containing up to 30 vectors were scanned, and several general
properties of KS vectors were found.Comment: 19 pages, 6 figures, title changed, introduction thoroughly
rewritten, n-dim rotation of KS vectors defined, original Kochen-Specker 192
(117) vector system translated into MMP diagram notation with a new graphical
representation, results on Tkadlec's dual diagrams added, several other new
results added, journal version: to be published in J. Phys. A, 38 (2005). Web
page: http://m3k.grad.hr/pavici
Screening Methodology for the Efficient Pairing of Ionic Liquids and Carbonaceous Electrodes Applied to Electric Energy Storage
A model is presented that correlates the measured electric capacitance with the energy that comprises the desolvation, dissociation and adsorption energy of an ionic liquid into carbonaceous electrode (represented by single-wall carbon nanotubes). An original methodology is presented that allows for the calculation of the adsorption energy of ions in a host system that does not necessarily compensate the total charge of the adsorbed ions, leaving an overall net charge. To obtain overall negative (favorable) energies, adsorption energies need to overcome the energy cost for desolvation of the ion pair and its dissociation into individual ions. Smaller ions, such as BF4 −, generally show larger dissociation energies than anions such as PF6 − or TFSI−. Adsorption energies gradually increase with decreasing pore size of the CNT and show a maximum when the pore size is slightly greater than the dimensions of the adsorbed ion and the attractive van der Waals forces dominate the interaction. At smaller pore diameters, the adsorption energy sharply declines and becomes repulsive as a result of geometry deformations of the ion. Only for those diameters where the adsorption reaches maximum values is the adsorption energy sufficiently negative to balance the positive dissociation and desolvation energies. We present for each ion (and ionic liquid) what the most adequate electrode pore size should be for maximum capacitance
In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations
Experimental Characterization of a Binary Actuated Parallel Manipulator
This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at LARM. Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics
Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy
<div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i><0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p<</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div
- …
