26 research outputs found

    amei: An R Package for the Adaptive Management of Epidemiological Interventions

    Get PDF
    The amei package for R is a tool that provides a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic. Uncertainty regarding the underlying disease parameters is propagated through to the decision process via Bayesian posterior inference. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates. This document briefly covers the background and methodology underpinning the implementation provided by the package and contains extensive examples showing the functions and methods in action.

    amei: An R Package for the Adaptive Management of Epidemiological Interventions

    Get PDF
    The <b>amei</b> package for <b>R</b> is a tool that provides a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic. Uncertainty regarding the underlying disease parameters is propagated through to the decision process via Bayesian posterior inference. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates. This document briefly covers the background and methodology underpinning the implementation provided by the package and contains extensive examples showing the functions and methods in action

    A Statistical Framework for the Adaptive Management of Epidemiological Interventions

    Get PDF
    Background: Epidemiological interventions aim to control the spread of infectious disease through various mechanisms, each carrying a different associated cost. Methodology: We describe a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic while simultaneously propagating uncertainty regarding the underlying disease model parameters through to the decision process. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates. Conclusions: Using simulation studies based on a classic influenza outbreak, we demonstrate the advantages of adaptiv

    Prototype Testing Results of Charged Particle Detectors and Critical Subsystems for the ESRA Mission to GTO

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation (DemVal) missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic paritcle sensors along with critical subsystems. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through ground-based testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth\u27s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the charged particle populations in the dynamic radiation belts

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmän Eating Disorders Working Group of the Psychiatric Genomics Consortium jäseniä. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Expected costs under static intervention.

    No full text
    <p>Costs under optimal (2.5, 50, 97.5)-% quantiles for the total cost accrued over 1000 simulations of the epidemic under the optimal variable stop time strategy based on true parameter values. The mean total cost is 1652 cost units, with quantile bounds (1440,1846).</p

    Simulated epidemics under adaptive management.

    No full text
    <p>(2.5, 59, 97.5)-% quantiles for the numbers of susceptible, infected, recovered, and vaccinated individuals over 100 simulations of the epidemic under optimal adaptive management. The mean number of vaccine units dispensed is 428, with quantile bounds (351,536).</p
    corecore